Adversarially Trained Object Detector for Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2109.05751v1
- Date: Mon, 13 Sep 2021 07:21:28 GMT
- Title: Adversarially Trained Object Detector for Unsupervised Domain Adaptation
- Authors: Kazuma Fujii, Hiroshi Kera, Kazuhiko Kawamoto
- Abstract summary: We demonstrate that adversarial training in the source domain can be employed as a new approach for unsupervised domain adaptation.
We propose a method that combines adversarial training and feature alignment to ensure the improved alignment of robust features with the target domain.
- Score: 4.9631159466100305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation, which involves transferring knowledge from a
label-rich source domain to an unlabeled target domain, can be used to
substantially reduce annotation costs in the field of object detection. In this
study, we demonstrate that adversarial training in the source domain can be
employed as a new approach for unsupervised domain adaptation. Specifically, we
establish that adversarially trained detectors achieve improved detection
performance in target domains that are significantly shifted from source
domains. This phenomenon is attributed to the fact that adversarially trained
detectors can be used to extract robust features that are in alignment with
human perception and worth transferring across domains while discarding
domain-specific non-robust features. In addition, we propose a method that
combines adversarial training and feature alignment to ensure the improved
alignment of robust features with the target domain. We conduct experiments on
four benchmark datasets and confirm the effectiveness of our proposed approach
on large domain shifts from real to artistic images. Compared to the baseline
models, the adversarially trained detectors improve the mean average precision
by up to 7.7\%, and further by up to 11.8\% when feature alignments are
incorporated.
Related papers
- AIR-DA: Adversarial Image Reconstruction for Unsupervised Domain
Adaptive Object Detection [28.22783703278792]
Adrial Image Reconstruction (AIR) as the regularizer to facilitate the adversarial training of the feature extractor.
Our evaluations across several datasets of challenging domain shifts demonstrate that the proposed method outperforms all previous methods.
arXiv Detail & Related papers (2023-03-27T16:51:51Z) - Multilevel Knowledge Transfer for Cross-Domain Object Detection [26.105283273950942]
Domain shift is a well known problem where a model trained on a particular domain (source) does not perform well when exposed to samples from a different domain (target)
In this work, we address the domain shift problem for the object detection task.
Our approach relies on gradually removing the domain shift between the source and the target domains.
arXiv Detail & Related papers (2021-08-02T15:24:40Z) - Adapting Vehicle Detector to Target Domain by Adversarial Prediction
Alignment [5.144513690855333]
We propose novel domain adaptation technique for object detection that aligns prediction output space.
In addition to feature alignment, we aligned predictions of locations and class confidences of our vehicle detector for satellite images by adversarial training.
arXiv Detail & Related papers (2021-07-06T06:21:39Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Unsupervised Out-of-Domain Detection via Pre-trained Transformers [56.689635664358256]
Out-of-domain inputs can lead to unpredictable outputs and sometimes catastrophic safety issues.
Our work tackles the problem of detecting out-of-domain samples with only unsupervised in-domain data.
Two domain-specific fine-tuning approaches are further proposed to boost detection accuracy.
arXiv Detail & Related papers (2021-06-02T05:21:25Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Disentanglement-based Cross-Domain Feature Augmentation for Effective
Unsupervised Domain Adaptive Person Re-identification [87.72851934197936]
Unsupervised domain adaptive (UDA) person re-identification (ReID) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain for person matching.
One challenge is how to generate target domain samples with reliable labels for training.
We propose a Disentanglement-based Cross-Domain Feature Augmentation strategy.
arXiv Detail & Related papers (2021-03-25T15:28:41Z) - Re-energizing Domain Discriminator with Sample Relabeling for
Adversarial Domain Adaptation [88.86865069583149]
Unsupervised domain adaptation (UDA) methods exploit domain adversarial training to align the features to reduce domain gap.
In this work, we propose an efficient optimization strategy named Re-enforceable Adversarial Domain Adaptation (RADA)
RADA aims to re-energize the domain discriminator during the training by using dynamic domain labels.
arXiv Detail & Related papers (2021-03-22T08:32:55Z) - Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining
and Consistency [93.89773386634717]
Visual domain adaptation involves learning to classify images from a target visual domain using labels available in a different source domain.
We show that in the presence of a few target labels, simple techniques like self-supervision (via rotation prediction) and consistency regularization can be effective without any adversarial alignment to learn a good target classifier.
Our Pretraining and Consistency (PAC) approach, can achieve state of the art accuracy on this semi-supervised domain adaptation task, surpassing multiple adversarial domain alignment methods, across multiple datasets.
arXiv Detail & Related papers (2021-01-29T18:40:17Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain.
We propose distance metric guided feature alignment (MetFA) to extract discriminative as well as domain-invariant features on both source and target domains.
Our model integrates class distribution alignment to transfer semantic knowledge from a source domain to a target domain.
arXiv Detail & Related papers (2020-08-19T13:36:57Z) - Unsupervised Domain Adaptive Object Detection using Forward-Backward
Cyclic Adaptation [13.163271874039191]
We present a novel approach to perform the unsupervised domain adaptation for object detection through forward-backward cyclic (FBC) training.
Recent adversarial training based domain adaptation methods have shown their effectiveness on minimizing domain discrepancy via marginal feature distributions alignment.
We propose Forward-Backward Cyclic Adaptation, which iteratively computes adaptation from source to target via backward hopping and from target to source via forward passing.
arXiv Detail & Related papers (2020-02-03T06:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.