Effectiveness of Pre-training for Few-shot Intent Classification
- URL: http://arxiv.org/abs/2109.05782v2
- Date: Sun, 15 Sep 2024 16:28:00 GMT
- Title: Effectiveness of Pre-training for Few-shot Intent Classification
- Authors: Haode Zhang, Yuwei Zhang, Li-Ming Zhan, Jiaxin Chen, Guangyuan Shi, Albert Y. S. Lam, Xiao-Ming Wu,
- Abstract summary: This paper investigates the effectiveness of pre-training for few-shot intent classification.
We find it highly effective and efficient to simply fine-tune BERT with a small set of labeled utterances from public datasets.
IntentBERT can easily surpass the performance of existing pre-trained models for few-shot intent classification on novel domains.
- Score: 33.557100231606505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the effectiveness of pre-training for few-shot intent classification. While existing paradigms commonly further pre-train language models such as BERT on a vast amount of unlabeled corpus, we find it highly effective and efficient to simply fine-tune BERT with a small set of labeled utterances from public datasets. Specifically, fine-tuning BERT with roughly 1,000 labeled data yields a pre-trained model -- IntentBERT, which can easily surpass the performance of existing pre-trained models for few-shot intent classification on novel domains with very different semantics. The high effectiveness of IntentBERT confirms the feasibility and practicality of few-shot intent detection, and its high generalization ability across different domains suggests that intent classification tasks may share a similar underlying structure, which can be efficiently learned from a small set of labeled data. The source code can be found at https://github.com/hdzhang-code/IntentBERT.
Related papers
- Breaking the Token Barrier: Chunking and Convolution for Efficient Long
Text Classification with BERT [0.0]
Transformer-based models, specifically BERT, have propelled research in various NLP tasks.
BERT models are limited to a maximum token limit of 512 tokens. Consequently, this makes it non-trivial to apply it in a practical setting with long input.
We propose a relatively simple extension to vanilla BERT architecture called ChunkBERT that allows finetuning of any pretrained models to perform inference on arbitrarily long text.
arXiv Detail & Related papers (2023-10-31T15:41:08Z) - An Efficient Active Learning Pipeline for Legal Text Classification [2.462514989381979]
We propose a pipeline for effectively using active learning with pre-trained language models in the legal domain.
We use knowledge distillation to guide the model's embeddings to a semantically meaningful space.
Our experiments on Contract-NLI, adapted to the classification task, and LEDGAR benchmarks show that our approach outperforms standard AL strategies.
arXiv Detail & Related papers (2022-11-15T13:07:02Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
We propose MoEBERT, which uses a Mixture-of-Experts structure to increase model capacity and inference speed.
We validate the efficiency and effectiveness of MoEBERT on natural language understanding and question answering tasks.
arXiv Detail & Related papers (2022-04-15T23:19:37Z) - Trustable Co-label Learning from Multiple Noisy Annotators [68.59187658490804]
Supervised deep learning depends on massive accurately annotated examples.
A typical alternative is learning from multiple noisy annotators.
This paper proposes a data-efficient approach, called emphTrustable Co-label Learning (TCL)
arXiv Detail & Related papers (2022-03-08T16:57:00Z) - Dominant Set-based Active Learning for Text Classification and its
Application to Online Social Media [0.0]
We present a novel pool-based active learning method for the training of large unlabeled corpus with minimum annotation cost.
Our proposed method does not have any parameters to be tuned, making it dataset-independent.
Our method achieves a higher performance in comparison to the state-of-the-art active learning strategies.
arXiv Detail & Related papers (2022-01-28T19:19:03Z) - Finding the Winning Ticket of BERT for Binary Text Classification via
Adaptive Layer Truncation before Fine-tuning [7.797987384189306]
We construct a series of BERT-based models with different size and compare their predictions on 8 binary classification tasks.
The results show there truly exist smaller sub-networks performing better than the full model.
arXiv Detail & Related papers (2021-11-22T02:22:47Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z) - Discriminative Nearest Neighbor Few-Shot Intent Detection by
Transferring Natural Language Inference [150.07326223077405]
Few-shot learning is attracting much attention to mitigate data scarcity.
We present a discriminative nearest neighbor classification with deep self-attention.
We propose to boost the discriminative ability by transferring a natural language inference (NLI) model.
arXiv Detail & Related papers (2020-10-25T00:39:32Z) - BERT-ATTACK: Adversarial Attack Against BERT Using BERT [77.82947768158132]
Adrial attacks for discrete data (such as texts) are more challenging than continuous data (such as images)
We propose textbfBERT-Attack, a high-quality and effective method to generate adversarial samples.
Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage.
arXiv Detail & Related papers (2020-04-21T13:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.