論文の概要: MLFW: A Database for Face Recognition on Masked Faces
- arxiv url: http://arxiv.org/abs/2109.05804v1
- Date: Mon, 13 Sep 2021 09:30:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-14 15:34:22.857467
- Title: MLFW: A Database for Face Recognition on Masked Faces
- Title(参考訳): MLFW: マスケ顔の顔認識のためのデータベース
- Authors: Chengrui Wang, Han Fang, Yaoyao Zhong, Weihong Deng
- Abstract要約: マスクのない顔からマスクされた顔を自動的に生成する、シンプルだが効果的なツールを構築します。
本手法により生成したマスク面のマスクは,元の顔と良好な視界の整合性を有する。
現実的なシナリオを考えると、私たちは3種類の顔の組み合わせを設計します。
- 参考スコア(独自算出の注目度): 56.441078419992046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As more and more people begin to wear masks due to current COVID-19 pandemic,
existing face recognition systems may encounter severe performance degradation
when recognizing masked faces. To figure out the impact of masks on face
recognition model, we build a simple but effective tool to generate masked
faces from unmasked faces automatically, and construct a new database called
Masked LFW (MLFW) based on Cross-Age LFW (CALFW) database. The mask on the
masked face generated by our method has good visual consistency with the
original face. Moreover, we collect various mask templates, covering most of
the common styles appeared in the daily life, to achieve diverse generation
effects. Considering realistic scenarios, we design three kinds of combinations
of face pairs. The recognition accuracy of SOTA models declines 4\%-10\% on
MLFW database compared with the accuracy on the original images. Our MLFW
database can be viewed and downloaded at \url{http://whdeng.cn/mlfw}.
- Abstract(参考訳): 新型コロナウイルス(covid-19)のパンデミックでマスクを着用する人が増えているため、既存の顔認識システムはマスクを認識した場合、パフォーマンスが著しく低下する可能性がある。
マスクが顔認識モデルに与える影響を明らかにするため,マスク付き顔からマスク付き顔を自動的に生成するシンプルなツールを構築し,Cross-Age LFW(CALFW)データベースに基づくMasked LFW(MLFW)と呼ばれる新しいデータベースを構築した。
本手法により生成したマスク面は,元の顔と良好な視認性を有する。
さらに,様々なマスクテンプレートを収集し,日常生活に現れる一般的なスタイルのほとんどをカバーし,多様な世代効果を実現する。
現実的なシナリオを考えると、3種類の顔の組み合わせを設計します。
SOTAモデルの認識精度は、元の画像の精度と比較して、MLFWデータベース上で4\%-10\%低下する。
MLFWデータベースは \url{http://whdeng.cn/mlfw} で閲覧およびダウンロードできます。
関連論文リスト
- Face Mask Removal with Region-attentive Face Inpainting [0.7433327915285965]
本研究では,顔のマスク部分の復元・再構成を行う生成顔インペイント法を提案する。
提案手法は,空間情報損失を軽減するため,M-CSAM (M-scale Channel-Spatial Attention Module) を含む。
我々は、CelebAデータセットから5種類のマスクを組み込むことで、独自のMasked-Facesデータセットを合成する。
論文 参考訳(メタデータ) (2024-09-10T20:10:11Z) - Seeing through the Mask: Multi-task Generative Mask Decoupling Face
Recognition [47.248075664420874]
現在の一般的な顔認識システムは、隠蔽シーンに遭遇する際の重大な性能劣化に悩まされている。
本稿では,これら2つのタスクを協調的に扱うために,マルチタスクのgEnerative mask dEcoupling Face Recognition (MEER) ネットワークを提案する。
まず,マスクと識別情報を分離する新しいマスクデカップリングモジュールを提案する。
論文 参考訳(メタデータ) (2023-11-20T03:23:03Z) - FaceMAE: Privacy-Preserving Face Recognition via Masked Autoencoders [81.21440457805932]
顔のプライバシと認識性能を同時に考慮する新しいフレームワークFaceMAEを提案する。
ランダムにマスクされた顔画像は、FaceMAEの再構築モジュールのトレーニングに使用される。
また、いくつかの公開顔データセット上で十分なプライバシー保護顔認証を行う。
論文 参考訳(メタデータ) (2022-05-23T07:19:42Z) - Mask-invariant Face Recognition through Template-level Knowledge
Distillation [3.727773051465455]
マスクは従来の顔認識システムの性能に影響を与える。
マスク不変顔認識ソリューション(MaskInv)を提案する。
蒸留された知識に加えて、学生ネットワークは、マージンベースのアイデンティティ分類損失による追加ガイダンスの恩恵を受ける。
論文 参考訳(メタデータ) (2021-12-10T16:19:28Z) - Adversarial Mask: Real-World Adversarial Attack Against Face Recognition
Models [66.07662074148142]
本稿では,最先端の深層学習に基づく顔認識モデルに対する物理対角的普遍摂動(UAP)を提案する。
実験では,幅広い深層学習モデルとデータセットへの対向マスクの転送可能性について検討した。
ファブリック・メディカル・フェイスマスクに対向パターンを印刷することにより,実世界の実験において,我々の対向マスクの有効性を検証した。
論文 参考訳(メタデータ) (2021-11-21T08:13:21Z) - A realistic approach to generate masked faces applied on two novel
masked face recognition data sets [14.130698536174767]
本稿では,マスクのない顔を含むデータセットを合成マスクを作成し,元の画像の顔に重ね合わせることによって拡張する手法を提案する。
CASIA-WebFaceデータセットの445,446 (90%) のマスクと,CelebAデータセットの196,254 (96.8%) のマスクを生成した。
本手法は, 被験者に対して, 他の方法やデータセットと定性的に比較するように依頼することで, 顔にオーバーレイしたマスクのより現実的なトレーニング例を生成する。
論文 参考訳(メタデータ) (2021-09-03T22:33:55Z) - Indian Masked Faces in the Wild Dataset [86.79402670904338]
本研究では,ポーズ,照明,解像度,被検者の着用するマスクの多様さを特徴とする,IMFWデータセットを新たに提案する。
また,提案したIMFWデータセットにおいて,既存の顔認識モデルの性能をベンチマークした。
論文 参考訳(メタデータ) (2021-06-17T17:23:54Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
顔認識システムには、顔提示攻撃検出(PAD)が不可欠である。
ほとんどの既存の3DマスクPADベンチマークにはいくつかの欠点があります。
現実世界のアプリケーションとのギャップを埋めるために、大規模なハイファイアリティマスクデータセットを紹介します。
論文 参考訳(メタデータ) (2021-04-13T12:48:38Z) - A 3D model-based approach for fitting masks to faces in the wild [9.958467179573235]
マスクされた顔に対する様々なポーズの顔画像を増やすために,WearMask3Dと呼ばれる3次元モデルに基づくアプローチを提案する。
提案手法は,まず入力画像に3D形態素モデルを適用し,マスク表面を顔モデルにオーバーレイし,各マスクテクスチャをワープし,最後に3Dマスクを2Dに投影することで進行する。
実験の結果,wearmask3dはよりリアルなマスク画像を生成することを示し,これらの画像を用いたトレーニングによりマスク顔の認識精度が向上した。
論文 参考訳(メタデータ) (2021-03-01T06:50:18Z) - MaskedFace-Net -- A Dataset of Correctly/Incorrectly Masked Face Images
in the Context of COVID-19 [2.7528170226206443]
マスクの着用は、新型コロナウイルスの感染拡大を制限する解決策として現れる。
このタスクを行うためには,マスクを着用している人やマスクを着用していない人を検出するために,深層学習モデルの訓練にマスク付き顔の大規模なデータセットが必要である。
マスクされた顔の大規模なデータセットが文献で公開されているが、現在、検出されたマスクされた顔が正しく着用されているかどうかを確認できるマスクされた顔画像の大規模なデータセットは存在しない。
論文 参考訳(メタデータ) (2020-08-18T16:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。