Nonlinear matrix recovery using optimization on the Grassmann manifold
- URL: http://arxiv.org/abs/2109.06095v1
- Date: Mon, 13 Sep 2021 16:13:13 GMT
- Title: Nonlinear matrix recovery using optimization on the Grassmann manifold
- Authors: Florentin Goyens and Coralia Cartis and Armin Eftekhari
- Abstract summary: We investigate the problem of recovering a partially observed high-rank clustering matrix whose columns obey a nonlinear structure such as a union of subspaces.
We show that the alternating limit converges to a unique point using the Kurdyka-Lojasi property.
- Score: 18.655422834567577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the problem of recovering a partially observed high-rank
matrix whose columns obey a nonlinear structure such as a union of subspaces,
an algebraic variety or grouped in clusters. The recovery problem is formulated
as the rank minimization of a nonlinear feature map applied to the original
matrix, which is then further approximated by a constrained non-convex
optimization problem involving the Grassmann manifold. We propose two sets of
algorithms, one arising from Riemannian optimization and the other as an
alternating minimization scheme, both of which include first- and second-order
variants.
Both sets of algorithms have theoretical guarantees. In particular, for the
alternating minimization, we establish global convergence and worst-case
complexity bounds. Additionally, using the Kurdyka-Lojasiewicz property, we
show that the alternating minimization converges to a unique limit point.
We provide extensive numerical results for the recovery of union of subspaces
and clustering under entry sampling and dense Gaussian sampling. Our methods
are competitive with existing approaches and, in particular, high accuracy is
achieved in the recovery using Riemannian second-order methods.
Related papers
- Riemannian Optimization for Non-convex Euclidean Distance Geometry with Global Recovery Guarantees [6.422262171968397]
Two algorithms are proposed to solve the Euclidean Distance Geometry problem.
First algorithm converges linearly to the true solution.
Second algorithm demonstrates strong numerical performance on both synthetic and real data.
arXiv Detail & Related papers (2024-10-08T21:19:22Z) - Riemannian Bilevel Optimization [35.42472057648458]
We focus in particular on batch and gradient-based methods, with the explicit goal of avoiding second-order information.
We propose and analyze $mathrmRF2SA$, a method that leverages first-order gradient information.
We provide explicit convergence rates for reaching $epsilon$-stationary points under various setups.
arXiv Detail & Related papers (2024-05-22T20:49:01Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
We show that policies under study avoid strict saddle points / submanifolds with probability 1.
This result provides an important sanity check as it shows that, almost always, the limit state of an algorithm can only be a local minimizer.
arXiv Detail & Related papers (2023-11-04T11:12:24Z) - Recovering Simultaneously Structured Data via Non-Convex Iteratively
Reweighted Least Squares [0.8702432681310401]
We propose a new algorithm for recovering data that adheres to multiple, heterogeneous low-dimensional structures from linear observations.
We show that the IRLS method favorable in identifying low/comckuele state measurements.
arXiv Detail & Related papers (2023-06-08T06:35:47Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
Robust low-rank matrix completion (RMC) has been studied extensively for computer vision, signal processing and machine learning applications.
This problem aims to decompose a partially observed matrix into the superposition of a low-rank matrix and a sparse matrix, where the sparse matrix captures the grossly corrupted entries of the matrix.
A widely used approach to tackle RMC is to consider a convex formulation, which minimizes the nuclear norm of the low-rank matrix (to promote low-rankness) and the l1 norm of the sparse matrix (to promote sparsity).
In this paper, motivated by some recent works on low-
arXiv Detail & Related papers (2020-08-18T04:46:22Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.