論文の概要: The Grammar-Learning Trajectories of Neural Language Models
- arxiv url: http://arxiv.org/abs/2109.06096v1
- Date: Mon, 13 Sep 2021 16:17:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-14 16:14:53.607594
- Title: The Grammar-Learning Trajectories of Neural Language Models
- Title(参考訳): ニューラル言語モデルの文法学習軌跡
- Authors: Leshem Choshen, Guy Hacohen, Daphna Weinshall, Omri Abend
- Abstract要約: ニューラルネットワークモデルは,データ上での終末性能が異なるにもかかわらず,同じ順序で言語現象を取得することを示す。
以上の結果から,NLMは一貫した発達段階を示すことが示唆された。
- 参考スコア(独自算出の注目度): 42.32479280480742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The learning trajectories of linguistic phenomena provide insight into the
nature of linguistic representation, beyond what can be gleaned from inspecting
the behavior of an adult speaker. To apply a similar approach to analyze neural
language models (NLM), it is first necessary to establish that different models
are similar enough in the generalizations they make. In this paper, we show
that NLMs with different initialization, architecture, and training data
acquire linguistic phenomena in a similar order, despite having different end
performances over the data. Leveraging these findings, we compare the relative
performance on different phenomena at varying learning stages with simpler
reference models. Results suggest that NLMs exhibit consistent
``developmental'' stages. Initial analysis of these stages presents phenomena
clusters (notably morphological ones), whose performance progresses in unison,
suggesting potential links between their acquired representations.
- Abstract(参考訳): 言語現象の学習の軌跡は、大人の話者の行動の検査から得られるものを超えて、言語表現の性質についての洞察を与える。
同様のアプローチをニューラルネットワークモデル(nlm)に応用するには、異なるモデルがそれらの一般化において十分類似していることを確立する必要がある。
本稿では,初期化,アーキテクチャ,訓練データが異なるnlmが,データ上での終末性能が異なるにもかかわらず,同様の順序で言語現象を得ることを示す。
これらの知見を生かして、異なる学習段階における異なる現象の相対的性能を、より単純な参照モデルと比較する。
以上の結果から,nlmsは「発達的」な段階を示すことが示唆された。
これらの段階の初期分析は、その性能が一斉に進行する現象クラスター(特に形態的クラスター)を示し、獲得した表現間の潜在的なリンクを示唆している。
関連論文リスト
- Investigating the Timescales of Language Processing with EEG and Language Models [0.0]
本研究では,事前学習した言語モデルと脳波データからの単語表現のアライメントを検討することで,言語処理の時間的ダイナミクスについて検討する。
テンポラル・レスポンス・ファンクション(TRF)モデルを用いて、神経活動が異なる層にまたがるモデル表現とどのように対応するかを検討する。
分析の結果,異なる層からのTRFのパターンが明らかとなり,語彙的および構成的処理への様々な貢献が明らかになった。
論文 参考訳(メタデータ) (2024-06-28T12:49:27Z) - Interpretability of Language Models via Task Spaces [14.543168558734001]
本稿では,解釈言語モデル (LM) の代替手法を提案する。
我々は、LM処理の品質に焦点を合わせ、言語能力に焦点をあてる。
言語現象間の関係を照らす「言語的タスク空間」を構築した。
論文 参考訳(メタデータ) (2024-06-10T16:34:30Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
言語モデル(LM)の言語能力を評価するための新しいベンチマークであるHolmesを紹介する。
我々は、計算に基づく探索を用いて、異なる言語現象に関するLMの内部表現を調べる。
その結果,近年,他の認知能力からLMの言語能力を引き離す声が上がっている。
論文 参考訳(メタデータ) (2024-04-29T17:58:36Z) - Self-Supervised Models of Speech Infer Universal Articulatory Kinematics [44.27187669492598]
SSLモデルの基本特性として「調音キネマティクスの推論」を示す。
また、この抽象化は、モデルをトレーニングするために使用されるデータの言語に大きく重なり合っていることも示しています。
簡単なアフィン変換では、アコースティック・トゥ・アコースティック・トゥ・アーティキュレーション・インバージョン(AAI)は、性別、言語、方言でさえ話者間で変換可能であることを示す。
論文 参考訳(メタデータ) (2023-10-16T19:50:01Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
大規模言語モデルにおけるコンテキスト内学習を実現するためのフレームワークを提案する。
メタモデルは、カスタマイズされたデモからなる自己教師型プロンプトで学ぶことができる。
実験の結果、SINCは様々な視覚言語タスクにおいて勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-15T08:33:08Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
既存の視覚・言語モデルと視覚のみのモデルにおける視覚表現の比較分析を行う。
我々の経験的観察は、視覚・言語モデルがラベル予測タスクに優れていることを示唆している。
我々の研究は、視覚学習における言語の役割に光を当て、様々な事前学習モデルの実証的なガイドとして機能することを願っている。
論文 参考訳(メタデータ) (2022-12-01T05:00:18Z) - On the Compositional Generalization Gap of In-Context Learning [73.09193595292233]
In-distriion (ID) と Out-of-distriion (OOD) の相違について考察する。
我々は,3つの意味解析データセットを用いて,OPT,BLOOM,CodeGen,Codexの4つのモデルファミリを評価する。
論文 参考訳(メタデータ) (2022-11-15T19:56:37Z) - Implicit Representations of Meaning in Neural Language Models [31.71898809435222]
会話を通して進化する実体や状況のモデルとして機能する文脈表現を同定する。
その結果,事前学習されたニューラルネットワークモデルにおける予測は,少なくとも部分的には,意味の動的表現と実体状態の暗黙的なシミュレーションによって支持されていることが示唆された。
論文 参考訳(メタデータ) (2021-06-01T19:23:20Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
談話言語表現を学習するための新しい事前学習目的である文レベル言語モデリングを導入する。
本モデルでは,この特徴により,従来のBERTの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-10-30T13:33:41Z) - Overestimation of Syntactic Representationin Neural Language Models [16.765097098482286]
構文構造を誘導するモデルの能力を決定する一般的な方法の1つは、テンプレートに従って生成された文字列上でモデルを訓練し、それらの文字列と表面的に類似した文字列を異なる構文で区別するモデルの能力をテストすることである。
本稿では,2つの非シンタクティックなベースライン言語モデルを用いた最近の論文の肯定的な結果を再現することで,このアプローチの根本的な問題を説明する。
論文 参考訳(メタデータ) (2020-04-10T15:13:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。