論文の概要: Sequential Modelling with Applications to Music Recommendation,
Fact-Checking, and Speed Reading
- arxiv url: http://arxiv.org/abs/2109.06736v1
- Date: Sat, 11 Sep 2021 08:05:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-15 15:58:44.571498
- Title: Sequential Modelling with Applications to Music Recommendation,
Fact-Checking, and Speed Reading
- Title(参考訳): 音楽レコメンデーション, ファクト・チェッキン, スピード・レディングにおける逐次モデリング
- Authors: Christian Hansen
- Abstract要約: この論文は、音声のセマンティクスを処理するリスナーやシステムに楽曲を推奨するシステムの特定の適用領域について、方法論的なコントリビューションとシーケンシャルモデリングの新しい研究を行っている。
- 参考スコア(独自算出の注目度): 4.434614653851092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential modelling entails making sense of sequential data, which naturally
occurs in a wide array of domains. One example is systems that interact with
users, log user actions and behaviour, and make recommendations of items of
potential interest to users on the basis of their previous interactions. In
such cases, the sequential order of user interactions is often indicative of
what the user is interested in next. Similarly, for systems that automatically
infer the semantics of text, capturing the sequential order of words in a
sentence is essential, as even a slight re-ordering could significantly alter
its original meaning. This thesis makes methodological contributions and new
investigations of sequential modelling for the specific application areas of
systems that recommend music tracks to listeners and systems that process text
semantics in order to automatically fact-check claims, or "speed read" text for
efficient further classification. (Rest of abstract omitted due to arXiv
abstract limit)
- Abstract(参考訳): シーケンシャルモデリングには、さまざまなドメインで自然に発生するシーケンシャルなデータの意味が伴う。
例えば、ユーザと対話し、ユーザのアクションと振る舞いをログし、以前のインタラクションに基づいてユーザに対する潜在的関心事項のレコメンデーションを行うシステムである。
このような場合、ユーザインタラクションの逐次順序は、ユーザが次に何に興味を持っているかを示すことが多い。
同様に、テキストのセマンティクスを自動的に推測するシステムでは、文中の単語のシーケンシャルな順序を取ることが不可欠である。
この論文は、自動ファクトチェッククレームや「高速読解」テキストを効率的に分類するために、リスナーやシステムに楽曲を推薦するシステムの特定の適用領域に対する方法論的貢献とシーケンシャルモデリングの新しい研究を行っている。
(arXivの抽象的制限による抽象的省略の傾向)
関連論文リスト
- CAST: Corpus-Aware Self-similarity Enhanced Topic modelling [16.562349140796115]
CAST: Corpus-Aware Self-similarity Enhanced Topic modelling, a novel topic modelling methodを紹介する。
機能的単語が候補話題語として振る舞うのを防ぐための効果的な指標として自己相似性を見出した。
提案手法は,生成したトピックの一貫性と多様性,およびノイズの多いデータを扱うトピックモデルの能力を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-19T15:27:11Z) - Does It Look Sequential? An Analysis of Datasets for Evaluation of Sequential Recommendations [0.8437187555622164]
逐次リコメンデータシステムは、ユーザの履歴におけるインタラクションの順序を利用して、将来のインタラクションを予測することを目的としている。
シーケンシャルな構造を示すデータセットを使用して、シーケンシャルなレコメンデータを適切に評価することが重要です。
本研究では,ユーザの対話列のランダムシャッフルに基づくいくつかの手法を適用し,15個のデータセットの連続構造の強度を評価する。
論文 参考訳(メタデータ) (2024-08-21T21:40:07Z) - Sequential Recommendation on Temporal Proximities with Contrastive
Learning and Self-Attention [3.7182810519704095]
逐次リコメンデータシステムは、過去のインタラクションからユーザの好みを識別し、後続の項目を最適に予測する。
最近のモデルでは、類似の時間枠中に暗黙的に発生するユーザの行動の類似性を無視することが多い。
本稿では,時間的近接性を考慮したコントラスト学習と自己認識手法を含む,TemProxRecという逐次レコメンデーションモデルを提案する。
論文 参考訳(メタデータ) (2024-02-15T08:33:16Z) - Walking Down the Memory Maze: Beyond Context Limit through Interactive
Reading [63.93888816206071]
我々は,長いコンテキストを要約ノードのツリーに処理する手法であるMemWalkerを紹介した。クエリを受信すると,モデルがこのツリーをナビゲートして関連する情報を検索し,十分な情報を収集すると応答する。
その結果,MemWalkerは,テキストを対話的に読み取る際の推論ステップを強調し,クエリに関連するテキストセグメントをピンポイントすることで,説明性の向上を図っている。
論文 参考訳(メタデータ) (2023-10-08T06:18:14Z) - Recommender Systems with Generative Retrieval [58.454606442670034]
本稿では,対象候補の識別子を自己回帰的に復号する新たな生成検索手法を提案する。
そのために、各項目のセマンティックIDとして機能するために、意味論的に意味のあるコードワードを作成します。
提案手法を用いて学習した推薦システムは,様々なデータセット上での現在のSOTAモデルよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-05-08T21:48:17Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
ユーザの好みのダイナミックさを捉えることは、ユーザの将来の行動を予測する上で非常に重要です。
浅いものも深いものも含む、既存のレコメンデーションアルゴリズムの多くは、このようなダイナミクスを独立してモデル化することが多い。
本稿では、ユーザのシーケンシャルな振る舞いを、ユーザ好みの潜伏した空間に埋め込むことの問題について考察する。
論文 参考訳(メタデータ) (2022-04-02T03:23:46Z) - From Implicit to Explicit feedback: A deep neural network for modeling
sequential behaviours and long-short term preferences of online users [3.464871689508835]
暗黙的かつ明示的なフィードバックは、有用な推奨のために異なる役割を持つ。
ユーザの嗜好は,長期的利益と短期的利益の組み合わせである,という仮説から導かれる。
論文 参考訳(メタデータ) (2021-07-26T16:59:20Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z) - Dynamic Memory based Attention Network for Sequential Recommendation [79.5901228623551]
DMAN(Dynamic Memory-based Attention Network)と呼ばれる新しい連続的推薦モデルを提案する。
長い動作シーケンス全体を一連のサブシーケンスに分割し、モデルをトレーニングし、ユーザの長期的な利益を維持するためにメモリブロックのセットを維持する。
動的メモリに基づいて、ユーザの短期的および長期的関心を明示的に抽出し、組み合わせて効率的な共同推薦を行うことができる。
論文 参考訳(メタデータ) (2021-02-18T11:08:54Z) - Sparse-Interest Network for Sequential Recommendation [78.83064567614656]
本稿では,シーケンシャルレコメンデーションのためのtextbfSparse textbfInterest textbfNEtwork(SINE)を提案する。
我々のスパース関心モジュールは、大きなコンセプトプールから各ユーザに対してスパースの概念セットを適応的に推測することができる。
SINEは最先端の手法よりも大幅に改善できる。
論文 参考訳(メタデータ) (2021-02-18T11:03:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。