ROMAX: Certifiably Robust Deep Multiagent Reinforcement Learning via
Convex Relaxation
- URL: http://arxiv.org/abs/2109.06795v1
- Date: Tue, 14 Sep 2021 16:18:35 GMT
- Title: ROMAX: Certifiably Robust Deep Multiagent Reinforcement Learning via
Convex Relaxation
- Authors: Chuangchuang Sun, Dong-Ki Kim, and Jonathan P. How
- Abstract summary: Cyber-physical attacks can challenge the robustness of multiagent reinforcement learning.
We propose a minimax MARL approach to infer the worst-case policy update of other agents.
- Score: 32.091346776897744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a multirobot system, a number of cyber-physical attacks (e.g.,
communication hijack, observation perturbations) can challenge the robustness
of agents. This robustness issue worsens in multiagent reinforcement learning
because there exists the non-stationarity of the environment caused by
simultaneously learning agents whose changing policies affect the transition
and reward functions. In this paper, we propose a minimax MARL approach to
infer the worst-case policy update of other agents. As the minimax formulation
is computationally intractable to solve, we apply the convex relaxation of
neural networks to solve the inner minimization problem. Such convex relaxation
enables robustness in interacting with peer agents that may have significantly
different behaviors and also achieves a certified bound of the original
optimization problem. We evaluate our approach on multiple mixed
cooperative-competitive tasks and show that our method outperforms the previous
state of the art approaches on this topic.
Related papers
- Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Risk-Aware Distributed Multi-Agent Reinforcement Learning [8.287693091673658]
We develop a distributed MARL approach to solve decision-making problems in unknown environments by learning risk-aware actions.
We then propose a distributed MARL algorithm called the CVaR QD-Learning algorithm, and establish that value functions of individual agents reaches consensus.
arXiv Detail & Related papers (2023-04-04T17:56:44Z) - A Variational Approach to Mutual Information-Based Coordination for
Multi-Agent Reinforcement Learning [17.893310647034188]
We propose a new mutual information framework for multi-agent reinforcement learning.
Applying policy to maximize the derived lower bound, we propose a practical algorithm named variational maximum mutual information multi-agent actor-critic.
arXiv Detail & Related papers (2023-03-01T12:21:30Z) - Residual Q-Networks for Value Function Factorizing in Multi-Agent
Reinforcement Learning [0.0]
We propose a novel concept of Residual Q-Networks (RQNs) for Multi-Agent Reinforcement Learning (MARL)
The RQN learns to transform the individual Q-value trajectories in a way that preserves the Individual-Global-Max criteria (IGM)
The proposed method converges faster, with increased stability and shows robust performance in a wider family of environments.
arXiv Detail & Related papers (2022-05-30T16:56:06Z) - Learning Cooperative Multi-Agent Policies with Partial Reward Decoupling [13.915157044948364]
One of the preeminent obstacles to scaling multi-agent reinforcement learning is assigning credit to individual agents' actions.
In this paper, we address this credit assignment problem with an approach that we call textitpartial reward decoupling (PRD)
PRD decomposes large cooperative multi-agent RL problems into decoupled subproblems involving subsets of agents, thereby simplifying credit assignment.
arXiv Detail & Related papers (2021-12-23T17:48:04Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - DSDF: An approach to handle stochastic agents in collaborative
multi-agent reinforcement learning [0.0]
We show how thisity of agents, which could be a result of malfunction or aging of robots, can add to the uncertainty in coordination.
Our solution, DSDF which tunes the discounted factor for the agents according to uncertainty and use the values to update the utility networks of individual agents.
arXiv Detail & Related papers (2021-09-14T12:02:28Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning [92.05556163518999]
MARL exacerbates matters by imposing various constraints on communication and observability.
For value-based methods, it poses challenges in accurately representing the optimal value function.
For policy gradient methods, it makes training the critic difficult and exacerbates the problem of the lagging critic.
We show that from a learning theory perspective, both problems can be addressed by accurately representing the associated action-value function.
arXiv Detail & Related papers (2021-05-31T23:08:05Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC)
It is a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces.
We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2020-03-14T21:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.