Learning Cooperative Multi-Agent Policies with Partial Reward Decoupling
- URL: http://arxiv.org/abs/2112.12740v1
- Date: Thu, 23 Dec 2021 17:48:04 GMT
- Title: Learning Cooperative Multi-Agent Policies with Partial Reward Decoupling
- Authors: Benjamin Freed, Aditya Kapoor, Ian Abraham, Jeff Schneider, Howie
Choset
- Abstract summary: One of the preeminent obstacles to scaling multi-agent reinforcement learning is assigning credit to individual agents' actions.
In this paper, we address this credit assignment problem with an approach that we call textitpartial reward decoupling (PRD)
PRD decomposes large cooperative multi-agent RL problems into decoupled subproblems involving subsets of agents, thereby simplifying credit assignment.
- Score: 13.915157044948364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the preeminent obstacles to scaling multi-agent reinforcement learning
to large numbers of agents is assigning credit to individual agents' actions.
In this paper, we address this credit assignment problem with an approach that
we call \textit{partial reward decoupling} (PRD), which attempts to decompose
large cooperative multi-agent RL problems into decoupled subproblems involving
subsets of agents, thereby simplifying credit assignment. We empirically
demonstrate that decomposing the RL problem using PRD in an actor-critic
algorithm results in lower variance policy gradient estimates, which improves
data efficiency, learning stability, and asymptotic performance across a wide
array of multi-agent RL tasks, compared to various other actor-critic
approaches. Additionally, we relate our approach to counterfactual multi-agent
policy gradient (COMA), a state-of-the-art MARL algorithm, and empirically show
that our approach outperforms COMA by making better use of information in
agents' reward streams, and by enabling recent advances in advantage estimation
to be used.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Learning Emergence of Interaction Patterns across Independent RL Agents in Multi-Agent Environments [3.0284592792243794]
Bottom Up Network (BUN) treats the collective of multi-agents as a unified entity.
Our empirical evaluations across a variety of cooperative multi-agent scenarios, including tasks such as cooperative navigation and traffic control, consistently demonstrate BUN's superiority over baseline methods with substantially reduced computational costs.
arXiv Detail & Related papers (2024-10-03T14:25:02Z) - Effective Multi-Agent Deep Reinforcement Learning Control with Relative
Entropy Regularization [6.441951360534903]
Multi-Agent Continuous Dynamic Policy Gradient (MACDPP) was proposed to tackle the issues of limited capability and sample efficiency in various scenarios controlled by multiple agents.
It alleviates the inconsistency of multiple agents' policy updates by introducing the relative entropy regularization to the Training with Decentralized Execution (CTDE) framework with the Actor-Critic (AC) structure.
arXiv Detail & Related papers (2023-09-26T07:38:19Z) - Deep Multi-Agent Reinforcement Learning for Decentralized Active
Hypothesis Testing [11.639503711252663]
We tackle the multi-agent active hypothesis testing (AHT) problem by introducing a novel algorithm rooted in the framework of deep multi-agent reinforcement learning.
We present a comprehensive set of experimental results that effectively showcase the agents' ability to learn collaborative strategies and enhance performance.
arXiv Detail & Related papers (2023-09-14T01:18:04Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - A Policy Resonance Approach to Solve the Problem of Responsibility
Diffusion in Multiagent Reinforcement Learning [9.303181273699417]
Naively inheriting the single-agent exploration-exploitation strategy from single-agent algorithms causes potential collaboration failures.
We name this problem the Responsibility Diffusion (RD) as it shares similarities with a same-name social psychology effect.
We show that SOTA algorithms can equip this approach to promote the collaborative performance of agents in complex cooperative tasks.
arXiv Detail & Related papers (2022-08-16T13:56:00Z) - RACA: Relation-Aware Credit Assignment for Ad-Hoc Cooperation in
Multi-Agent Deep Reinforcement Learning [55.55009081609396]
We propose a novel method, called Relation-Aware Credit Assignment (RACA), which achieves zero-shot generalization in ad-hoc cooperation scenarios.
RACA takes advantage of a graph-based encoder relation to encode the topological structure between agents.
Our method outperforms baseline methods on the StarCraftII micromanagement benchmark and ad-hoc cooperation scenarios.
arXiv Detail & Related papers (2022-06-02T03:39:27Z) - Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement
Learning with Actor Rectification [74.10976684469435]
offline reinforcement learning (RL) algorithms can be transferred to multi-agent settings directly.
We propose a simple yet effective method, Offline Multi-Agent RL with Actor Rectification (OMAR), to tackle this critical challenge.
OMAR significantly outperforms strong baselines with state-of-the-art performance in multi-agent continuous control benchmarks.
arXiv Detail & Related papers (2021-11-22T13:27:42Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
Multi-agent adversarial inverse reinforcement learning (MA-AIRL) is a recent approach that applies single-agent AIRL to multi-agent problems.
We propose a multi-agent inverse RL algorithm that is more sample-efficient and scalable than previous works.
arXiv Detail & Related papers (2020-02-24T20:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.