論文の概要: Improving Robustness and Efficiency in Active Learning with Contrastive
Loss
- arxiv url: http://arxiv.org/abs/2109.06873v1
- Date: Mon, 13 Sep 2021 21:09:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 15:14:32.053010
- Title: Improving Robustness and Efficiency in Active Learning with Contrastive
Loss
- Title(参考訳): コントラスト損失を伴うアクティブラーニングにおけるロバスト性と効率性の向上
- Authors: Ranganath Krishnan, Nilesh Ahuja, Alok Sinha, Mahesh Subedar, Omesh
Tickoo, Ravi Iyer
- Abstract要約: 本稿では,教師付き環境下での能動学習に比較学習の損失を生かして,教師付きコントラッシブ・アクティブ・ラーニング(SCAL)を提案する。
多様な特徴表現の偏りのない情報的データサンプルを選択するために,能動的学習における効率的なクエリ戦略を提案する。
- 参考スコア(独自算出の注目度): 13.994967246046008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces supervised contrastive active learning (SCAL) by
leveraging the contrastive loss for active learning in a supervised setting. We
propose efficient query strategies in active learning to select unbiased and
informative data samples of diverse feature representations. We demonstrate our
proposed method reduces sampling bias, achieves state-of-the-art accuracy and
model calibration in an active learning setup with the query computation 11x
faster than CoreSet and 26x faster than Bayesian active learning by
disagreement. Our method yields well-calibrated models even with imbalanced
datasets. We also evaluate robustness to dataset shift and out-of-distribution
in active learning setup and demonstrate our proposed SCAL method outperforms
high performing compute-intensive methods by a bigger margin (average 8.9%
higher AUROC for out-of-distribution detection and average 7.2% lower ECE under
dataset shift).
- Abstract(参考訳): 本稿では,教師付き学習におけるコントラストロスを利用した教師付きコントラスト型アクティブラーニング(scal)を提案する。
多様な特徴表現の偏りのない情報的データサンプルを選択するために,能動的学習における効率的なクエリ戦略を提案する。
提案手法は,クエリ計算をCoreSetの11倍,ベイズ能動学習の26倍に高速化することで,サンプリングバイアスを低減し,最先端の精度とモデルのキャリブレーションを実現する。
提案手法は,不均衡なデータセットであってもよく校正されたモデルを生成する。
また、アクティブな学習環境におけるデータセットシフトとアウト・オブ・ディストリビューションに対するロバスト性を評価し、提案したSCAL法は、高パフォーマンスな計算集約手法をより大きなマージンで上回っている(アウト・オブ・ディストリビューション検出では平均8.9%、データセットシフト時には平均7.2%)。
関連論文リスト
- Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
多様な不確実なデータのバランスをとるために適応的なサブプールを構築する新しいフレームワークであるBalancing Active Learning (BAL)を導入する。
我々のアプローチは、広く認識されているベンチマークにおいて、確立されたすべてのアクティブな学習方法より1.20%優れています。
論文 参考訳(メタデータ) (2023-12-26T08:14:46Z) - Optimal Sample Selection Through Uncertainty Estimation and Its
Application in Deep Learning [22.410220040736235]
コアセット選択とアクティブラーニングの両方に対処するための理論的に最適な解を提案する。
提案手法であるCOPSは,サブサンプルデータに基づいてトレーニングされたモデルの損失を最小限に抑えるために設計されている。
論文 参考訳(メタデータ) (2023-09-05T14:06:33Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
ラベルのないサンプルが高損失を伴っていると信じられている場合に,データアノテーションのオラクルに問い合わせる,新しいディープラーニングアプローチを提案する。
本手法は,画像分類やセマンティックセグメンテーションタスクにおける最先端の能動学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-12-20T19:29:37Z) - Mitigating Sampling Bias and Improving Robustness in Active Learning [13.994967246046008]
教師付き環境下での能動学習に比較学習の損失を生かして教師付き能動学習を導入する。
多様な特徴表現の情報的データサンプルを選択するアンバイアスなクエリ戦略を提案する。
提案手法は,アクティブな学習環境において,サンプリングバイアスを低減し,最先端の精度を実現し,モデルの校正を行う。
論文 参考訳(メタデータ) (2021-09-13T20:58:40Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
両レベル最適化によるデータ要約問題として,本手法を定式化する。
本手法は,ラベル付きサンプルがほとんど存在しない場合,レジーム内のキーワード検出タスクにおいて極めて有効であることを示す。
論文 参考訳(メタデータ) (2020-10-19T16:53:24Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
深い予測モデルは、ラベル付きトレーニングデータという形で人間の監督に依存する。
Ask-n-Learnは,各アルゴリズムで推定されたペスドラベルを用いて得られる勾配埋め込みに基づく能動的学習手法である。
論文 参考訳(メタデータ) (2020-09-30T05:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。