論文の概要: Will this Question be Answered? Question Filtering via Answer Model
Distillation for Efficient Question Answering
- arxiv url: http://arxiv.org/abs/2109.07009v1
- Date: Tue, 14 Sep 2021 23:07:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 15:08:23.213886
- Title: Will this Question be Answered? Question Filtering via Answer Model
Distillation for Efficient Question Answering
- Title(参考訳): この質問は答えられるだろうか?
効率的な質問回答のための回答モデル蒸留による質問フィルタリング
- Authors: Siddhant Garg, Alessandro Moschitti
- Abstract要約: 本稿では,質問回答システム(QA)の効率向上に向けた新しいアプローチを提案する。
最新のQAシステムの回答信頼性スコアは、入力された質問テキストのみを使用してモデルによってうまく近似することができる。
- 参考スコア(独自算出の注目度): 99.66470885217623
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper we propose a novel approach towards improving the efficiency of
Question Answering (QA) systems by filtering out questions that will not be
answered by them. This is based on an interesting new finding: the answer
confidence scores of state-of-the-art QA systems can be approximated well by
models solely using the input question text. This enables preemptive filtering
of questions that are not answered by the system due to their answer confidence
scores being lower than the system threshold. Specifically, we learn
Transformer-based question models by distilling Transformer-based answering
models. Our experiments on three popular QA datasets and one industrial QA
benchmark demonstrate the ability of our question models to approximate the
Precision/Recall curves of the target QA system well. These question models,
when used as filters, can effectively trade off lower computation cost of QA
systems for lower Recall, e.g., reducing computation by ~60%, while only losing
~3-4% of Recall.
- Abstract(参考訳): 本稿では,質問応答(QA)システムの効率向上に向けた新しいアプローチを提案する。
最新のQAシステムの回答信頼性スコアは、入力された質問テキストのみを使用してモデルによってうまく近似することができる。
これにより、応答信頼度スコアがシステムしきい値よりも低いため、システムによって応答されない質問の事前フィルタリングが可能になる。
具体的には,トランスベース応答モデルを蒸留することにより,トランスベースの質問モデルを学ぶ。
一般的な3つのQAデータセットと1つの産業用QAベンチマーク実験により、ターゲットQAシステムの精度/リコール曲線をよく近似する質問モデルの能力を実証した。
これらの問題モデルは、フィルタとして使用される場合、QAシステムのより低い計算コストを、例えばリコールの削減のために効果的にトレードオフすることができる。
関連論文リスト
- SQUARE: Automatic Question Answering Evaluation using Multiple Positive
and Negative References [73.67707138779245]
SQuArE (Sentence-level QUestion AnsweRing Evaluation) という新しい評価指標を提案する。
文レベルの抽出(回答選択)と生成(GenQA)の両方のQAシステムでSQuArEを評価する。
論文 参考訳(メタデータ) (2023-09-21T16:51:30Z) - Improving the Question Answering Quality using Answer Candidate
Filtering based on Natural-Language Features [117.44028458220427]
本稿では,質問応答(QA)の品質をいかに改善できるかという課題に対処する。
私たちの主な貢献は、QAシステムが提供する間違った回答を識別できるアプローチです。
特に,提案手法は誤答の大部分を除去しつつ,その可能性を示した。
論文 参考訳(メタデータ) (2021-12-10T11:09:44Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
質問生成 (QG) とは, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、
我々は、自由なニュース要約データを使用し、宣言文を依存性解析、名前付きエンティティ認識、セマンティックロールラベリングを用いて適切な質問に変換する。
得られた質問は、元のニュース記事と組み合わせて、エンドツーエンドのニューラルQGモデルをトレーニングする。
論文 参考訳(メタデータ) (2021-09-16T13:08:43Z) - OneStop QAMaker: Extract Question-Answer Pairs from Text in a One-Stop
Approach [11.057028572260064]
本論文では,文書からQAペアを生成するOneStopというモデルを提案する。
具体的には、質問と対応する回答を同時に抽出する。
OneStopは、複雑なQA生成タスクを解決するために1つのモデルしか必要としないため、産業シナリオでトレーニングやデプロイを行うのがずっと効率的です。
論文 参考訳(メタデータ) (2021-02-24T08:45:00Z) - Summary-Oriented Question Generation for Informational Queries [23.72999724312676]
主文書のトピックに焦点をあてた自己説明的質問を,適切な長さのパスで答えられるようにすることを目的としている。
本モデルでは,NQデータセット(20.1BLEU-4)上でのSQ生成のSOTA性能を示す。
我々はさらに,本モデルをドメイン外のニュース記事に適用し,ゴールド質問の欠如によるQAシステムによる評価を行い,私たちのモデルがニュース記事に対してより良いSQを生成することを実証し,人間による評価によるさらなる確認を行う。
論文 参考訳(メタデータ) (2020-10-19T17:30:08Z) - Unsupervised Evaluation for Question Answering with Transformers [46.16837670041594]
本稿では, トランスフォーマーに基づくQAアーキテクチャにおける質問, 回答, コンテキストの隠蔽表現について検討する。
回答表現における一貫したパターンを観察し、予測された回答が正しいかどうかを自動的に評価することができることを示す。
私たちはモデルの解答が正解かどうかを、SQuADの91.37%、SubjQAの80.7%の精度で予測することができる。
論文 参考訳(メタデータ) (2020-10-07T07:03:30Z) - Selective Question Answering under Domain Shift [90.021577320085]
モデルがドメイン外の入力に対して過度に信頼されているため、モデルのソフトマックス確率のみに基づくアテンションポリシーは不適切である。
キャリブレータをトレーニングして、QAモデルがアースする入力を識別し、エラーを予測した場合に停止する。
提案手法は,80%の精度を維持しながら56%の質問に回答するが,それに対してモデルの確率を直接使用する場合,80%の精度で48%しか回答しない。
論文 参考訳(メタデータ) (2020-06-16T19:13:21Z) - Harvesting and Refining Question-Answer Pairs for Unsupervised QA [95.9105154311491]
教師なし質問回答(QA)を改善するための2つのアプローチを提案する。
まず、ウィキペディアから語彙的・構文的に異なる質問を抽出し、質問応答対のコーパスを自動的に構築する(RefQAと名づけられる)。
第2に、より適切な回答を抽出するためにQAモデルを活用し、RefQA上でデータを反復的に洗練する。
論文 参考訳(メタデータ) (2020-05-06T15:56:06Z) - Unsupervised Question Decomposition for Question Answering [102.56966847404287]
本論文では, ワンツーNアン教師付きシーケンスシーケンス(ONUS)のアルゴリズムを提案する。
当初,ドメイン外,マルチホップ開発セットのベースラインが強かったため,HotpotQAでは大きなQA改善が見られた。
論文 参考訳(メタデータ) (2020-02-22T19:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。