論文の概要: Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM
- arxiv url: http://arxiv.org/abs/2109.07208v1
- Date: Wed, 15 Sep 2021 10:54:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 21:50:46.011203
- Title: Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM
- Title(参考訳): 空間変調ODMのための機械学習パラダイムに基づくチャネル推定
- Authors: Ahmed M. Badi, Taissir Y. Elganimi, Osama A. S. Alkishriwo, and Nadia
Adem
- Abstract要約: ディープニューラルネットワーク(DNN)は、レイリーフェディングチャネル上のエンドツーエンドデータ検出のための空間変調直交周波数分割多重化(SM-OFDM)技術と統合されている。
提案システムは受信したシンボルを直接復調し,チャネル推定を暗黙的に行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, deep neural network (DNN) is integrated with spatial
modulation-orthogonal frequency division multiplexing (SM-OFDM) technique for
end-to-end data detection over Rayleigh fading channel. This proposed system
directly demodulates the received symbols, leaving the channel estimation done
only implicitly. Furthermore, an ensemble network is also proposed for this
system. Simulation results show that the proposed DNN detection scheme has a
significant advantage over classical methods when the pilot overhead and cyclic
prefix (CP) are reduced, owing to its ability to learn and adjust to
complicated channel conditions. Finally, the ensemble network is shown to
improve the generalization of the proposed scheme, while also showing a slight
improvement in its performance.
- Abstract(参考訳): 本稿では,dnn(deep neural network)とsm-ofdm(spatial modulation-orthogonal frequency division multiplexing)技術を統合し,レイリーフェージングチャネル上でのエンドツーエンドデータ検出を行う。
提案システムは受信したシンボルを直接復調し,チャネル推定を暗黙的に行う。
また,本システムにはアンサンブルネットワークも提案されている。
シミュレーションの結果,提案手法はパイロットオーバヘッドとサイクリックプレフィックス(CP)の低減に際し,複雑なチャネル条件の学習と調整が可能なため,従来の手法に比べて大きな優位性を有することがわかった。
最後に,アンサンブルネットワークにより提案手法の一般化が促進され,性能も若干改善された。
関連論文リスト
- Joint Sparsity Pattern Learning Based Channel Estimation for Massive
MIMO-OTFS Systems [46.42375183269616]
大規模マルチインプット・マルチアウトプット(MIMO)変調システムのためのジョイント・スパシティ・パターン・ラーニング(JSPL)に基づくチャネル推定手法を提案する。
シミュレーション結果と解析の結果から,提案したチャネル推定手法は,最先端のベースライン方式よりも性能が向上することが示された。
論文 参考訳(メタデータ) (2024-03-06T15:05:39Z) - An ML-assisted OTFS vs. OFDM adaptable modem [1.8492669447784602]
OTFSおよびOFDM波形は、レガシーアーキテクチャの再利用、レシーバ設計の単純さ、低複雑さ検出の利点を享受する。
本稿では,送信機におけるOTFSまたはOFDM信号処理チェーンと受信機とを切り替えて,平均二乗誤差(MSE)性能を最適化するディープニューラルネットワーク(DNN)に基づく適応方式を提案する。
論文 参考訳(メタデータ) (2023-09-04T02:33:44Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
チャネル推定とビームフォーミングは、周波数分割二重化(FDD)大規模マルチインプット多重出力(MIMO)システムにおいて重要な役割を果たす。
受信したアップリンクパイロットに応じて,基地局のビームフォーマを直接最適化する深層学習方式を提案する。
エンド・ツー・エンドの設計のスケーラビリティを向上させるために,ニューラルキャリブレーション法を提案する。
論文 参考訳(メタデータ) (2021-08-03T14:26:14Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - End-to-End Learning for Uplink MU-SIMO Joint Transmitter and
Non-Coherent Receiver Design in Fading Channels [11.182920270301304]
JTRD-Netと呼ばれる新しいエンドツーエンド学習手法が提案され、マルチユーザシングルインプットマルチ出力(MU-SIMO)ジョイントトランスミッタとフェーディングチャネルにおける非コヒーレントレシーバー設計(JTRD)をアップリンクする。
送信側は、マルチユーザー波形設計を担当する並列線形層のグループとしてモデル化されています。
非コヒーレント受信機は、マルチユーザ検出(MUD)機能を提供するために、ディープフィードフォワードニューラルネットワーク(DFNN)によって形成される。
論文 参考訳(メタデータ) (2021-05-04T02:47:59Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。