論文の概要: Risk Measurement, Risk Entropy, and Autonomous Driving Risk Modeling
- arxiv url: http://arxiv.org/abs/2109.07211v1
- Date: Wed, 15 Sep 2021 11:00:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 14:49:54.294042
- Title: Risk Measurement, Risk Entropy, and Autonomous Driving Risk Modeling
- Title(参考訳): リスク計測、リスクエントロピーおよび自動運転リスクモデリング
- Authors: Jiamin Yu
- Abstract要約: 本稿では、自律運転シナリオにおける新たな技術的困難、新しいアイデア、リスクモデリング手法について考察する。
コンピュータシミュレーション環境下でのリスクアセスメントと自動車保険の価格を実現するための技術的実現可能性を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: It has been for a long time to use big data of autonomous vehicles for
perception, prediction, planning, and control of driving. Naturally, it is
increasingly questioned why not using this big data for risk management and
actuarial modeling. This article examines the emerging technical difficulties,
new ideas, and methods of risk modeling under autonomous driving scenarios.
Compared with the traditional risk model, the novel model is more consistent
with the real road traffic and driving safety performance. More importantly, it
provides technical feasibility for realizing risk assessment and car insurance
pricing under a computer simulation environment.
- Abstract(参考訳): 運転の知覚、予測、計画、制御のために自動運転車のビッグデータを使用するのは、長い間のことです。
当然、なぜこのビッグデータをリスク管理やアクチュアルモデリングに使わないのか、という疑問が高まっている。
本稿では、自律運転シナリオにおける技術的困難、新しいアイデア、リスクモデリングの手法について考察する。
従来のリスクモデルと比較すると、新しいモデルは実際の道路交通や運転安全性能と一貫性がある。
さらに重要なことは、コンピュータシミュレーション環境下でリスク評価と自動車保険の価格を実現するための技術的実現性を提供する。
関連論文リスト
- Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Risk-anticipatory autonomous driving strategies considering vehicles' weights, based on hierarchical deep reinforcement learning [12.014977175887767]
本研究では,周囲の車両の重量を考慮し,リスク予測に基づく自律運転戦略を開発する。
リスクフィールド理論に基づいて、周囲の車両重量を統合するリスクインジケータを提案し、自律運転決定に組み込んだ。
衝突時の潜在的な衝突エネルギーを示す指標を新たに提案し, AV駆動方式の性能評価を行った。
論文 参考訳(メタデータ) (2023-12-27T06:03:34Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Judge Me in Context: A Telematics-Based Driving Risk Prediction
Framework in Presence of Weak Risk Labels [1.52292571922932]
テレマティクスデータを使用して、現実世界のアプリケーションでリスク予測フレームワークを構築します。
私たちは、弱いリスクラベルを増やすために、新しいデータ駆動プロセスを採用しています。
米国の主要都市における実世界のデータをもとに,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2023-05-05T02:21:08Z) - RCP-RF: A Comprehensive Road-car-pedestrian Risk Management Framework
based on Driving Risk Potential Field [1.625213292350038]
本研究では,コネクテッド・アンド・オートマチック・ビークル(CAV)環境下での電位場理論に基づく総合運転リスク管理フレームワークRCP-RFを提案する。
既存のアルゴリズムと異なり,エゴ車と障害物車と歩行者係数の移動傾向は,提案手法において正当に考慮されている。
実世界のデータセットNGSIMおよび実AVプラットフォーム上での最先端手法に対する提案手法の優位性を検証する実証的研究を行った。
論文 参考訳(メタデータ) (2023-05-04T01:54:37Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Mathematical Models of Human Drivers Using Artificial Risk Fields [8.074019565026544]
我々は、人間の運転者が今後の道路状況に応じてどのように車両を制御するかを予測するために、人工リスクフィールドの概念を用いる。
リスクフィールドは、最大20秒の予測地平線において、高い予測精度で将来の軌道を予測するのに優れている。
論文 参考訳(メタデータ) (2022-05-24T15:39:01Z) - Don't Get Yourself into Trouble! Risk-aware Decision-Making for
Autonomous Vehicles [4.94950858749529]
1)望ましくない結果の確率と、2)望ましくない結果がどの程度望ましくないかを見積もる(損失)。
我々は、高レベルリスクベースの経路計画と強化学習に基づく低レベル制御を統合する、自動運転車のリスクベースの意思決定フレームワークを開発した。
この作業は、自動運転車がいつの日か回避し、危険な状況に対処することによって、安全性を向上させることができる。
論文 参考訳(メタデータ) (2021-06-08T18:24:02Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。