論文の概要: Topic Transferable Table Question Answering
- arxiv url: http://arxiv.org/abs/2109.07377v1
- Date: Wed, 15 Sep 2021 15:34:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 17:22:37.056526
- Title: Topic Transferable Table Question Answering
- Title(参考訳): 話題転送可能なテーブル質問応答
- Authors: Saneem Ahmed Chemmengath, Vishwajeet Kumar, Samarth Bharadwaj, Jaydeep
Sen, Mustafa Canim, Soumen Chakrabarti, Alfio Gliozzo, Karthik
Sankaranarayanan
- Abstract要約: 弱教師付きテーブル質問回答(TableQA)モデルは、事前学習されたBERT変換器を用いて質問とテーブルを共同で符号化し、質問のための構造化クエリを生成することにより、最先端のパフォーマンスを実現している。
実用的な設定では、TableQA システムは BERT の事前学習コーパスとは全く異なるトピックと単語の分布を持つテーブルコーパス上に展開される。
我々はT3QA(Topic Transferable Table Question Answering)をTableQAの実用的な適応フレームワークとして提案する。
- 参考スコア(独自算出の注目度): 33.54533181098762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weakly-supervised table question-answering(TableQA) models have achieved
state-of-art performance by using pre-trained BERT transformer to jointly
encoding a question and a table to produce structured query for the question.
However, in practical settings TableQA systems are deployed over table corpora
having topic and word distributions quite distinct from BERT's pretraining
corpus. In this work we simulate the practical topic shift scenario by
designing novel challenge benchmarks WikiSQL-TS and WikiTQ-TS, consisting of
train-dev-test splits in five distinct topic groups, based on the popular
WikiSQL and WikiTableQuestions datasets. We empirically show that, despite
pre-training on large open-domain text, performance of models degrades
significantly when they are evaluated on unseen topics. In response, we propose
T3QA (Topic Transferable Table Question Answering) a pragmatic adaptation
framework for TableQA comprising of: (1) topic-specific vocabulary injection
into BERT, (2) a novel text-to-text transformer generator (such as T5, GPT2)
based natural language question generation pipeline focused on generating topic
specific training data, and (3) a logical form reranker. We show that T3QA
provides a reasonably good baseline for our topic shift benchmarks. We believe
our topic split benchmarks will lead to robust TableQA solutions that are
better suited for practical deployment.
- Abstract(参考訳): 弱教師付きテーブル質問回答(TableQA)モデルは、事前学習されたBERT変換器を用いて質問とテーブルを共同で符号化し、質問のための構造化クエリを生成することにより、最先端のパフォーマンスを実現している。
しかし、実際の設定では、TableQA システムは BERT の事前学習コーパスとは全く異なるトピックと単語の分布を持つテーブルコーパス上に展開される。
本研究は, WikiSQL と WikiTableQuestions のデータセットをベースとして, 5つの異なるトピックグループからなるトレインデフテスト分割からなる新しい課題ベンチマーク WikiSQL-TS と WikiTQ-TS を設計することで, 実践的なトピックシフトシナリオをシミュレートする。
大規模オープンドメインのテキストを事前学習しているにもかかわらず、モデルの性能は未認識のトピックで評価すると著しく低下する。
これに対し,T3QA(Topic Transferable Table Question Answering)は,(1)トピック固有の語彙をBERTに注入する,(2)トピック固有のトレーニングデータを生成することに焦点を当てた,新たなテキストからテキストへのトランスフォーマー生成(T5,GPT2)ベースの自然言語質問生成パイプライン,(3)論理形式再帰という,テーブルQAの実用的な適応フレームワークを提案する。
トピックシフトベンチマークのベースラインとして,t3qaが適度に適しています。
当社のトピック分割ベンチマークは,実用的なデプロイメントに適した堅牢なTableQAソリューションにつながると思います。
関連論文リスト
- Large Language Models are Complex Table Parsers [26.66460264175336]
本稿では,複合表QAの課題に対処するため,GPT-3.5を導入することを提案する。
具体的には、各セルの階層構造、位置情報、およびコンテンツをデータセットとしてエンコードする。
本研究では,各タスクの意味の説明的記述によるプロンプトテンプレートの強化により,階層的認識構造能力を効果的に向上する。
論文 参考訳(メタデータ) (2023-12-13T01:34:42Z) - QTSumm: Query-Focused Summarization over Tabular Data [58.62152746690958]
人々は主に、データ分析を行うか、特定の質問に答えるためにテーブルをコンサルティングします。
そこで本研究では,テキスト生成モデルに人間的な推論を行なわなければならない,クエリ中心のテーブル要約タスクを新たに定義する。
このタスクには,2,934テーブル上の7,111の人間注釈付きクエリ-サマリーペアを含む,QTSummという新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:43:51Z) - MultiTabQA: Generating Tabular Answers for Multi-Table Question
Answering [61.48881995121938]
実世界のクエリは本質的に複雑で、リレーショナルデータベースやWebページ内の複数のテーブルにまたがることが多い。
我々のモデルであるMultiTabQAは、複数のテーブル上の質問に答えるだけでなく、表形式の回答を生成するために一般化する。
論文 参考訳(メタデータ) (2023-05-22T08:25:15Z) - Bridge the Gap between Language models and Tabular Understanding [99.88470271644894]
自然言語領域における事前学習の成功以降,テーブル事前学習のパラダイムが提案され,急速に採用されている。
有望な発見にもかかわらず、事前トレーニングと微調整フェーズの間には入力ギャップがある。
UTPは,テーブルテキスト,テーブル,テキストの3種類のマルチモーダル入力を動的にサポートする手法である。
論文 参考訳(メタデータ) (2023-02-16T15:16:55Z) - ReasTAP: Injecting Table Reasoning Skills During Pre-training via
Synthetic Reasoning Examples [15.212332890570869]
複雑なテーブル固有のアーキテクチャ設計を必要とせずに、事前学習中に高レベルのテーブル推論スキルをモデルに注入できることを示すためにReasTAPを開発した。
ReasTAPはすべてのベンチマークで最新のパフォーマンスを実現し、低リソース設定で大幅に改善されている。
論文 参考訳(メタデータ) (2022-10-22T07:04:02Z) - Dynamic Prompt Learning via Policy Gradient for Semi-structured
Mathematical Reasoning [150.17907456113537]
数学的な推論を必要とする38,431のグレードレベルの問題を含む新しいデータセットであるTabular Math Word Problems (TabMWP)を提案する。
我々は,GPT-3モデルを含む,TabMWP上での事前学習モデルの評価を行った。
本稿では、ポリシー勾配を利用して、少量のトレーニングデータからコンテキスト内サンプルを選択する新しいアプローチ、PromptPGを提案する。
論文 参考訳(メタデータ) (2022-09-29T08:01:04Z) - OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering [106.73213656603453]
最小限のアノテーションによるテーブルベースのQAモデルを構築した。
本稿では、自然データと合成データの両方を消費する全能事前学習手法を提案する。
論文 参考訳(メタデータ) (2022-07-08T01:23:45Z) - End-to-End Table Question Answering via Retrieval-Augmented Generation [19.89730342792824]
本稿では、T-RAGというテーブルQAモデルを紹介し、非パラメトリックな高密度ベクトルインデックスをパラメトリックシーケンス・ツー・シーケンスモデルであるBARTと組み合わせて微調整し、応答トークンを生成する。
自然言語の問題があれば、T-RAGは統合パイプラインを使用してテーブルコーパスを自動で検索し、テーブルセルから正しい回答を直接見つけ出す。
論文 参考訳(メタデータ) (2022-03-30T23:30:16Z) - Multi-Row, Multi-Span Distant Supervision For Table+Text Question [33.809732338627136]
テーブル上の質問応答(QA)と、TextTableQAとも呼ばれるリンクされたテキストは、近年重要な研究を目撃している。
両軸に沿って遠隔監視を行うように設計された変換器ベースのTextTableQAシステムであるMITQAを提案する。
論文 参考訳(メタデータ) (2021-12-14T12:48:19Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
テーブルセマンティック解析のための効果的な事前学習手法GraPPaを提案する。
我々は、同期文脈自由文法を用いて、高自由度テーブル上に合成質問ペアを構築する。
実世界のデータを表現できるモデルの能力を維持するため、マスキング言語モデリングも含んでいる。
論文 参考訳(メタデータ) (2020-09-29T08:17:58Z) - TAPAS: Weakly Supervised Table Parsing via Pre-training [16.661382998729067]
論理形式を生成せずにテーブル上で質問応答を行う手法であるTAPASを提案する。
我々は3つの異なる意味解析データセットを実験した。
TAPASは、最先端の精度を向上させることにより、セマンティックパーシングモデルよりも優れているか、あるいは競合することがわかった。
論文 参考訳(メタデータ) (2020-04-05T23:18:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。