RankNAS: Efficient Neural Architecture Search by Pairwise Ranking
- URL: http://arxiv.org/abs/2109.07383v2
- Date: Fri, 17 Sep 2021 12:32:08 GMT
- Title: RankNAS: Efficient Neural Architecture Search by Pairwise Ranking
- Authors: Chi Hu, Chenglong Wang, Xiangnan Ma, Xia Meng, Yinqiao Li, Tong Xiao,
Jingbo Zhu, Changliang Li
- Abstract summary: We propose a performance ranking method (RankNAS) via pairwise ranking.
It enables efficient architecture search using much fewer training examples.
It can design high-performance architectures while being orders of magnitude faster than state-of-the-art NAS systems.
- Score: 30.890612901949307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the efficiency challenge of Neural Architecture Search
(NAS) by formulating the task as a ranking problem. Previous methods require
numerous training examples to estimate the accurate performance of
architectures, although the actual goal is to find the distinction between
"good" and "bad" candidates. Here we do not resort to performance predictors.
Instead, we propose a performance ranking method (RankNAS) via pairwise
ranking. It enables efficient architecture search using much fewer training
examples. Moreover, we develop an architecture selection method to prune the
search space and concentrate on more promising candidates. Extensive
experiments on machine translation and language modeling tasks show that
RankNAS can design high-performance architectures while being orders of
magnitude faster than state-of-the-art NAS systems.
Related papers
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Neural Architecture Ranker [19.21631623578852]
Architecture ranking has recently been advocated to design an efficient and effective performance predictor for Neural Architecture Search (NAS)
Inspired by the stratification stratification, we propose a predictor, namely Neural Ranker (NAR)
arXiv Detail & Related papers (2022-01-30T04:54:59Z) - L$^{2}$NAS: Learning to Optimize Neural Architectures via
Continuous-Action Reinforcement Learning [23.25155249879658]
Differentiable architecture search (NAS) achieved remarkable results in deep neural network design.
We show that L$2$ achieves state-of-theart results on DART201 benchmark as well as NASS and Once-for-All search policies.
arXiv Detail & Related papers (2021-09-25T19:26:30Z) - RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform
Successive Halving [74.61723678821049]
We propose NOn-uniform Successive Halving (NOSH), a hierarchical scheduling algorithm that terminates the training of underperforming architectures early to avoid wasting budget.
We formulate predictor-based architecture search as learning to rank with pairwise comparisons.
The resulting method - RANK-NOSH, reduces the search budget by 5x while achieving competitive or even better performance than previous state-of-the-art predictor-based methods on various spaces and datasets.
arXiv Detail & Related papers (2021-08-18T07:45:21Z) - AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision
of Weight Sharing [6.171090327531059]
We introduce Learning to Rank methods to select the best (ace) architectures from a space.
We also propose to leverage weak supervision from weight sharing by pretraining architecture representation on weak labels obtained from the super-net.
Experiments on NAS benchmarks and large-scale search spaces demonstrate that our approach outperforms SOTA with a significantly reduced search cost.
arXiv Detail & Related papers (2021-08-06T08:31:42Z) - Contrastive Neural Architecture Search with Neural Architecture
Comparators [46.45102111497492]
One of the key steps in Neural Architecture Search (NAS) is to estimate the performance of candidate architectures.
Existing methods either directly use the validation performance or learn a predictor to estimate the performance.
We propose a novel Contrastive Neural Architecture Search (CTNAS) method which performs architecture search by taking the comparison results between architectures as the reward.
arXiv Detail & Related papers (2021-03-08T11:24:07Z) - ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse
Coding [86.40042104698792]
We formulate neural architecture search as a sparse coding problem.
In experiments, our two-stage method on CIFAR-10 requires only 0.05 GPU-day for search.
Our one-stage method produces state-of-the-art performances on both CIFAR-10 and ImageNet at the cost of only evaluation time.
arXiv Detail & Related papers (2020-10-13T04:34:24Z) - DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search [76.9225014200746]
Efficient search is a core issue in Neural Architecture Search (NAS)
We present DA-NAS that can directly search the architecture for large-scale target tasks while allowing a large candidate set in a more efficient manner.
It is 2x faster than previous methods while the accuracy is currently state-of-the-art, at 76.2% under small FLOPs constraint.
arXiv Detail & Related papers (2020-03-27T17:55:21Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
We propose an efficient and unified NAS framework termed DDPNAS via dynamic distribution pruning.
In particular, we first sample architectures from a joint categorical distribution. Then the search space is dynamically pruned and its distribution is updated every few epochs.
With the proposed efficient network generation method, we directly obtain the optimal neural architectures on given constraints.
arXiv Detail & Related papers (2019-05-28T06:35:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.