Semi-supervised Contrastive Learning for Label-efficient Medical Image
Segmentation
- URL: http://arxiv.org/abs/2109.07407v1
- Date: Wed, 15 Sep 2021 16:23:48 GMT
- Title: Semi-supervised Contrastive Learning for Label-efficient Medical Image
Segmentation
- Authors: Xinrong Hu, Dewen Zeng, Xiaowei Xu, and Yiyu Shi
- Abstract summary: We propose a supervised local contrastive loss that leverages limited pixel-wise annotation to force pixels with the same label to gather around in the embedding space.
With different amounts of labeled data, our methods consistently outperform the state-of-the-art contrast-based methods and other semi-supervised learning techniques.
- Score: 11.935891325600952
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The success of deep learning methods in medical image segmentation tasks
heavily depends on a large amount of labeled data to supervise the training. On
the other hand, the annotation of biomedical images requires domain knowledge
and can be laborious. Recently, contrastive learning has demonstrated great
potential in learning latent representation of images even without any label.
Existing works have explored its application to biomedical image segmentation
where only a small portion of data is labeled, through a pre-training phase
based on self-supervised contrastive learning without using any labels followed
by a supervised fine-tuning phase on the labeled portion of data only. In this
paper, we establish that by including the limited label in formation in the
pre-training phase, it is possible to boost the performance of contrastive
learning. We propose a supervised local contrastive loss that leverages limited
pixel-wise annotation to force pixels with the same label to gather around in
the embedding space. Such loss needs pixel-wise computation which can be
expensive for large images, and we further propose two strategies, downsampling
and block division, to address the issue. We evaluate our methods on two public
biomedical image datasets of different modalities. With different amounts of
labeled data, our methods consistently outperform the state-of-the-art
contrast-based methods and other semi-supervised learning techniques.
Related papers
- Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey [49.47197748663787]
This review aims to provide a first comprehensive and organized overview of the state-of-the-art research results on pseudo-label methods in the field of semi-supervised semantic segmentation.
In addition, we explore the application of pseudo-label technology in medical and remote-sensing image segmentation.
arXiv Detail & Related papers (2024-03-04T10:18:38Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
We propose PGV-CL, a novel pseudo-label guided cross-video contrast learning method to boost scene segmentation.
We extensively evaluate our method on a public robotic surgery dataset EndoVis18 and a public cataract dataset CaDIS.
arXiv Detail & Related papers (2022-07-20T05:42:19Z) - Local contrastive loss with pseudo-label based self-training for
semi-supervised medical image segmentation [13.996217500923413]
Semi/self-supervised learning-based approaches exploit unlabeled data along with limited annotated data.
Recent self-supervised learning methods use contrastive loss to learn good global level representations from unlabeled images.
We propose a local contrastive loss to learn good pixel level features useful for segmentation by exploiting semantic label information.
arXiv Detail & Related papers (2021-12-17T17:38:56Z) - A Pixel-Level Meta-Learner for Weakly Supervised Few-Shot Semantic
Segmentation [40.27705176115985]
Few-shot semantic segmentation addresses the learning task in which only few images with ground truth pixel-level labels are available for the novel classes of interest.
We propose a novel meta-learning framework, which predicts pseudo pixel-level segmentation masks from a limited amount of data and their semantic labels.
Our proposed learning model can be viewed as a pixel-level meta-learner.
arXiv Detail & Related papers (2021-11-02T08:28:11Z) - Mixed Supervision Learning for Whole Slide Image Classification [88.31842052998319]
We propose a mixed supervision learning framework for super high-resolution images.
During the patch training stage, this framework can make use of coarse image-level labels to refine self-supervised learning.
A comprehensive strategy is proposed to suppress pixel-level false positives and false negatives.
arXiv Detail & Related papers (2021-07-02T09:46:06Z) - Distilling effective supervision for robust medical image segmentation
with noisy labels [21.68138582276142]
We propose a novel framework to address segmenting with noisy labels by distilling effective supervision information from both pixel and image levels.
In particular, we explicitly estimate the uncertainty of every pixel as pixel-wise noise estimation.
We present an image-level robust learning method to accommodate more information as the complements to pixel-level learning.
arXiv Detail & Related papers (2021-06-21T13:33:38Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
We propose a novel positional contrastive learning framework to generate contrastive data pairs.
The proposed PCL method can substantially improve the segmentation performance compared to existing methods in both semi-supervised setting and transfer learning setting.
arXiv Detail & Related papers (2021-06-16T22:15:28Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
This paper tackles the problem of learning a finer representation than the one provided by training labels.
By jointly leveraging the coarse labels and the underlying fine-grained latent space, it significantly improves the accuracy of category-level retrieval methods.
arXiv Detail & Related papers (2020-11-25T19:06:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.