Positional Contrastive Learning for Volumetric Medical Image
Segmentation
- URL: http://arxiv.org/abs/2106.09157v2
- Date: Fri, 18 Jun 2021 03:49:32 GMT
- Title: Positional Contrastive Learning for Volumetric Medical Image
Segmentation
- Authors: Dewen Zeng, Yawen Wu, Xinrong Hu, Xiaowei Xu, Haiyun Yuan, Meiping
Huang, Jian Zhuang, Jingtong Hu and Yiyu Shi
- Abstract summary: We propose a novel positional contrastive learning framework to generate contrastive data pairs.
The proposed PCL method can substantially improve the segmentation performance compared to existing methods in both semi-supervised setting and transfer learning setting.
- Score: 13.086140606803408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of deep learning heavily depends on the availability of large
labeled training sets. However, it is hard to get large labeled datasets in
medical image domain because of the strict privacy concern and costly labeling
efforts. Contrastive learning, an unsupervised learning technique, has been
proved powerful in learning image-level representations from unlabeled data.
The learned encoder can then be transferred or fine-tuned to improve the
performance of downstream tasks with limited labels. A critical step in
contrastive learning is the generation of contrastive data pairs, which is
relatively simple for natural image classification but quite challenging for
medical image segmentation due to the existence of the same tissue or organ
across the dataset. As a result, when applied to medical image segmentation,
most state-of-the-art contrastive learning frameworks inevitably introduce a
lot of false-negative pairs and result in degraded segmentation quality. To
address this issue, we propose a novel positional contrastive learning (PCL)
framework to generate contrastive data pairs by leveraging the position
information in volumetric medical images. Experimental results on CT and MRI
datasets demonstrate that the proposed PCL method can substantially improve the
segmentation performance compared to existing methods in both semi-supervised
setting and transfer learning setting.
Related papers
- Localized Region Contrast for Enhancing Self-Supervised Learning in
Medical Image Segmentation [27.82940072548603]
We propose a novel contrastive learning framework that integrates Localized Region Contrast (LRC) to enhance existing self-supervised pre-training methods for medical image segmentation.
Our approach involves identifying Super-pixels by Felzenszwalb's algorithm and performing local contrastive learning using a novel contrastive sampling loss.
arXiv Detail & Related papers (2023-04-06T22:43:13Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
We propose a cross-level constrastive learning scheme to enhance representation capacity for local features in semi-supervised medical image segmentation.
With the help of the cross-level contrastive learning and consistency constraint, the unlabelled data can be effectively explored to improve segmentation performance.
arXiv Detail & Related papers (2022-02-08T15:12:11Z) - Semi-supervised Contrastive Learning for Label-efficient Medical Image
Segmentation [11.935891325600952]
We propose a supervised local contrastive loss that leverages limited pixel-wise annotation to force pixels with the same label to gather around in the embedding space.
With different amounts of labeled data, our methods consistently outperform the state-of-the-art contrast-based methods and other semi-supervised learning techniques.
arXiv Detail & Related papers (2021-09-15T16:23:48Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
We propose to adapt contrastive learning to work with meta-label annotations.
We use the meta-labels for pre-training the image encoder as well as to regularize a semi-supervised training.
Results on three different medical image segmentation datasets show that our approach highly boosts the performance of a model trained on a few scans.
arXiv Detail & Related papers (2021-07-29T04:30:46Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.