Learning to Aggregate and Refine Noisy Labels for Visual Sentiment
Analysis
- URL: http://arxiv.org/abs/2109.07509v1
- Date: Wed, 15 Sep 2021 18:18:28 GMT
- Title: Learning to Aggregate and Refine Noisy Labels for Visual Sentiment
Analysis
- Authors: Wei Zhu, Zihe Zheng, Haitian Zheng, Hanjia Lyu, Jiebo Luo
- Abstract summary: We propose a robust learning method to perform robust visual sentiment analysis.
Our method relies on an external memory to aggregate and filter noisy labels during training.
We establish a benchmark for visual sentiment analysis with label noise using publicly available datasets.
- Score: 69.48582264712854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual sentiment analysis has received increasing attention in recent years.
However, the quality of the dataset is a concern because the sentiment labels
are crowd-sourcing, subjective, and prone to mistakes. This poses a severe
threat to the data-driven models including the deep neural networks which would
generalize poorly on the testing cases if they are trained to over-fit the
samples with noisy sentiment labels. Inspired by the recent progress on
learning with noisy labels, we propose a robust learning method to perform
robust visual sentiment analysis. Our method relies on an external memory to
aggregate and filter noisy labels during training and thus can prevent the
model from overfitting the noisy cases. The memory is composed of the
prototypes with corresponding labels, both of which can be updated online. We
establish a benchmark for visual sentiment analysis with label noise using
publicly available datasets. The experiment results of the proposed benchmark
settings comprehensively show the effectiveness of our method.
Related papers
- ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
We propose a method called ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) to learn representations with error tolerance.
ERASE combines prototype pseudo-labels with propagated denoised labels and updates representations with error resilience.
Our method can outperform multiple baselines with clear margins in broad noise levels and enjoy great scalability.
arXiv Detail & Related papers (2023-12-13T17:59:07Z) - Rethinking Noisy Label Learning in Real-world Annotation Scenarios from
the Noise-type Perspective [38.24239397999152]
We propose a novel sample selection-based approach for noisy label learning, called Proto-semi.
Proto-semi divides all samples into the confident and unconfident datasets via warm-up.
By leveraging the confident dataset, prototype vectors are constructed to capture class characteristics.
Empirical evaluations on a real-world annotated dataset substantiate the robustness of Proto-semi in handling the problem of learning from noisy labels.
arXiv Detail & Related papers (2023-07-28T10:57:38Z) - Learning to Detect Noisy Labels Using Model-Based Features [16.681748918518075]
We propose Selection-Enhanced Noisy label Training (SENT)
SENT does not rely on meta learning while having the flexibility of being data-driven.
It improves performance over strong baselines under the settings of self-training and label corruption.
arXiv Detail & Related papers (2022-12-28T10:12:13Z) - Label Noise in Adversarial Training: A Novel Perspective to Study Robust
Overfitting [45.58217741522973]
We show that label noise exists in adversarial training.
Such label noise is due to the mismatch between the true label distribution of adversarial examples and the label inherited from clean examples.
We propose a method to automatically calibrate the label to address the label noise and robust overfitting.
arXiv Detail & Related papers (2021-10-07T01:15:06Z) - Robust Long-Tailed Learning under Label Noise [50.00837134041317]
This work investigates the label noise problem under long-tailed label distribution.
We propose a robust framework,algo, that realizes noise detection for long-tailed learning.
Our framework can naturally leverage semi-supervised learning algorithms to further improve the generalisation.
arXiv Detail & Related papers (2021-08-26T03:45:00Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Noisy Labels Can Induce Good Representations [53.47668632785373]
We study how architecture affects learning with noisy labels.
We show that training with noisy labels can induce useful hidden representations, even when the model generalizes poorly.
This finding leads to a simple method to improve models trained on noisy labels.
arXiv Detail & Related papers (2020-12-23T18:58:05Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision.
The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr.
This paper proposes the attention-aware noisy label learning approach to improve the discriminative capability of the network trained on datasets with potential label noise.
arXiv Detail & Related papers (2020-09-30T15:45:36Z) - Label Noise Types and Their Effects on Deep Learning [0.0]
In this work, we provide a detailed analysis of the effects of different kinds of label noise on learning.
We propose a generic framework to generate feature-dependent label noise, which we show to be the most challenging case for learning.
For the ease of other researchers to test their algorithms with noisy labels, we share corrupted labels for the most commonly used benchmark datasets.
arXiv Detail & Related papers (2020-03-23T18:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.