論文の概要: Subspace Learning for Personalized Federated Optimization
- arxiv url: http://arxiv.org/abs/2109.07628v1
- Date: Thu, 16 Sep 2021 00:03:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-17 14:13:03.638340
- Title: Subspace Learning for Personalized Federated Optimization
- Title(参考訳): 個人化フェデレーション最適化のためのサブスペース学習
- Authors: Seok-Ju Hahn, Minwoo Jeong, Junghye Lee
- Abstract要約: 本稿では,AIシステムにおけるパーソナライズされた学習の問題に対処する手法を提案する。
提案手法は、パーソナライズされたクライアント評価設定と見当たらないクライアント評価設定の両方において、一貫した利得が得られることを示す。
- 参考スコア(独自算出の注目度): 7.475183117508927
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As data is generated and stored almost everywhere, learning a model from a
data-decentralized setting is a task of interest for many AI-driven service
providers. Although federated learning is settled down as the main solution in
such situations, there still exists room for improvement in terms of
personalization. Training federated learning systems usually focuses on
optimizing a global model that is identically deployed to all client devices.
However, a single global model is not sufficient for each client to be
personalized on their performance as local data assumes to be not identically
distributed across clients. We propose a method to address this situation
through the lens of ensemble learning based on the construction of a low-loss
subspace continuum that generates a high-accuracy ensemble of two endpoints
(i.e. global model and local model). We demonstrate that our method achieves
consistent gains both in personalized and unseen client evaluation settings
through extensive experiments on several standard benchmark datasets.
- Abstract(参考訳): データがほぼどこでも生成され保存されるため、データ分散設定からモデルを学ぶことは、多くのai駆動サービスプロバイダにとって興味深いタスクです。
このような状況において、連合学習は主要な解決策として定着するが、パーソナライゼーションの観点では改善の余地がある。
連合学習システムのトレーニングは通常、すべてのクライアントデバイスに同一にデプロイされるグローバルモデルを最適化することに焦点を当てる。
しかし、ローカルデータが同一にクライアントに分散していないと仮定しているため、各クライアントがパフォーマンスでパーソナライズされるには、単一のグローバルモデルでは不十分である。
本稿では,2つのエンドポイント(すなわちグローバルモデルとローカルモデル)の高精度アンサンブルを生成する低損失部分空間連続体の構築に基づいて,アンサンブル学習のレンズを通してこの問題に対処する手法を提案する。
提案手法は,複数の標準ベンチマークデータセットに対する広範囲な実験により,パーソナライズされたクライアント評価設定と見えないクライアント評価設定の両方において一貫した利得が得られることを示す。
関連論文リスト
- MAP: Model Aggregation and Personalization in Federated Learning with Incomplete Classes [49.22075916259368]
一部の実世界のアプリケーションでは、データサンプルは通常、ローカルデバイスに分散される。
本稿では,クライアントが不完全なクラスを所有する特別なI.I.D.シーンに焦点を当てる。
提案するMAPアルゴリズムは,FLにおけるアグリゲーションとパーソナライゼーションの目標を同時に達成できる。
論文 参考訳(メタデータ) (2024-04-14T12:22:42Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$は、アルゴリズムに基づくパーソナライズされたフェデレーション学習フレームワークである。
我々は、textitLearn2pFed$が、従来のパーソナライズされたフェデレーション学習方法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-01-16T12:45:15Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
フェデレートラーニング(FL)は、プライバシを保存する方法で分散化されたデータからモデルを学習するための重要なテクニックである。
既存のFLメソッドは通常、各ラウンドでローカルモデル学習のために一様にクライアントをサンプリングする。
フェデレート学習のための新しいデータ一様サンプリング戦略(FedSampling)を提案する。
論文 参考訳(メタデータ) (2023-06-25T13:38:51Z) - Self-Aware Personalized Federated Learning [32.97492968378679]
本研究では,ベイズ階層モデルにインスパイアされた自己認識型パーソナライズド・フェデレーション・ラーニング(FL)手法を開発した。
本手法では,従来の局所微調整法とサンプルサイズに基づくアグリゲーションの代わりに,不確実性駆動型局所トレーニングステップとアグリゲーションルールを用いる。
合成データ、Amazon Alexa音声データ、MNIST、FEMNIST、CIFAR10、Sent140などの公開データセットに関する実験的研究により、提案手法はパーソナライズ性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-17T19:02:25Z) - PerFED-GAN: Personalized Federated Learning via Generative Adversarial
Networks [46.17495529441229]
フェデレーション学習(Federated Learning)は、AI依存のIoTアプリケーションをデプロイするために使用できる分散機械学習手法である。
本稿では,協調学習とGANに基づく連合学習手法を提案する。
提案手法は,クライアントのモデルアーキテクチャとデータ分布が大きく異なる場合,既存手法の精度を平均42%向上させる。
論文 参考訳(メタデータ) (2022-02-18T12:08:46Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - Personalized Federated Learning through Local Memorization [10.925242558525683]
フェデレーション学習により、クライアントはデータをローカルに保ちながら、統計的モデルを協調的に学習することができる。
最近のパーソナライズされた学習方法は、他のクライアントで利用可能な知識を活用しながら、各クライアントに対して別々のモデルを訓練する。
本稿では,この手法が最先端手法よりも精度と公平性を著しく向上することを示す。
論文 参考訳(メタデータ) (2021-11-17T19:40:07Z) - Personalized Federated Learning by Structured and Unstructured Pruning
under Data Heterogeneity [3.291862617649511]
クライアントレベルの目的からパーソナライズされたモデルを得るための新しいアプローチを提案する。
このパーソナライズを実現するために、各クライアントの小さなサブネットワークを見つける。
論文 参考訳(メタデータ) (2021-05-02T22:10:46Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
そこで我々は,各クライアントが他のクライアントと連携して,クライアント固有の目的ごとのより強力なモデルを得る,フェデレーション学習の代替案を提案する。
基礎となるデータ分布やクライアントの類似性に関する知識を前提とせず、各クライアントが関心のある任意のターゲット分布を最適化できるようにします。
この手法は既存の代替品を上回り、ローカルデータ配信以外の転送のようなパーソナライズされたFLの新機能を可能にする。
論文 参考訳(メタデータ) (2020-12-15T19:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。