論文の概要: METEOR: A Massive Dense & Heterogeneous Behavior Dataset for Autonomous
Driving
- arxiv url: http://arxiv.org/abs/2109.07648v1
- Date: Thu, 16 Sep 2021 01:01:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-18 04:14:11.864810
- Title: METEOR: A Massive Dense & Heterogeneous Behavior Dataset for Autonomous
Driving
- Title(参考訳): METEOR: 自律運転のための高密度・不均質な行動データセット
- Authors: Rohan Chandra, Mridul Mahajan, Rahul Kala, Rishitha Palugulla,
Chandrababu Naidu, Alok Jain, and Dinesh Manocha
- Abstract要約: 本稿では、インドにおける非構造化シナリオにおけるトラフィックパターンをキャプチャする、新しい複雑なトラフィックデータセットMETEORを提案する。
METEORは1000分以上のビデオクリップと、エゴ車軌道を持つ200万以上の注釈付きフレームと、周囲の車両や交通機関のための1300万以上のバウンディングボックスで構成されている。
我々は,オブジェクト検出と行動予測アルゴリズムの性能を評価するために,新しいデータセットを用いた。
- 参考スコア(独自算出の注目度): 42.69638782267657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new and complex traffic dataset, METEOR, which captures traffic
patterns in unstructured scenarios in India. METEOR consists of more than 1000
one-minute video clips, over 2 million annotated frames with ego-vehicle
trajectories, and more than 13 million bounding boxes for surrounding vehicles
or traffic agents. METEOR is a unique dataset in terms of capturing the
heterogeneity of microscopic and macroscopic traffic characteristics.
Furthermore, we provide annotations for rare and interesting driving behaviors
such as cut-ins, yielding, overtaking, overspeeding, zigzagging, sudden lane
changing, running traffic signals, driving in the wrong lanes, taking wrong
turns, lack of right-of-way rules at intersections, etc. We also present
diverse traffic scenarios corresponding to rainy weather, nighttime driving,
driving in rural areas with unmarked roads, and high-density traffic scenarios.
We use our novel dataset to evaluate the performance of object detection and
behavior prediction algorithms. We show that state-of-the-art object detectors
fail in these challenging conditions and also propose a new benchmark test:
action-behavior prediction with a baseline mAP score of 70.74.
- Abstract(参考訳): インドにおける非構造化シナリオにおけるトラフィックパターンをキャプチャする,新しい複雑なトラフィックデータセットMETEORを提案する。
METEORは1000分以上のビデオクリップと、エゴ車軌道を持つ200万以上の注釈付きフレームと、周囲の車両や交通機関のための1300万以上のバウンディングボックスで構成されている。
METEORは、微視的およびマクロ的な交通特性の不均一性を捉えたユニークなデータセットである。
さらに、カットイン、降車、オーバテイク、過速度、ジグザグ、突然車線変更、交通信号の実行、間違った車線での運転、間違ったターン、交差点での通行権の欠如など、希少で興味深い運転行動に対するアノテーションを提供する。
また, 雨天, 夜間運転, 道路標識のない農村部での運転, 高密度交通シナリオなど, 様々な交通シナリオを提示する。
我々は,新しいデータセットを用いて物体検出および行動予測アルゴリズムの性能評価を行った。
現状の物体検出器はこれらの困難な条件で故障することを示し、また新しいベンチマークテストとして、ベースラインmAPスコア70.74のアクションビヘイビア予測を提案する。
関連論文リスト
- Advance Real-time Detection of Traffic Incidents in Highways using Vehicle Trajectory Data [3.061662434597097]
本研究は、ルイジアナ州で最も急激な高速道路であるI-10の車両軌跡データと交通事故データを用いている。
さまざまな機械学習アルゴリズムを使用して、下流の道路区間で事故に遭遇する可能性のある軌道を検出する。
その結果,ランダムフォレストモデルでは,適切なリコール値と識別能力を持つインシデントを予測する上で,最高の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-08-15T00:51:48Z) - Detecting Socially Abnormal Highway Driving Behaviors via Recurrent
Graph Attention Networks [4.526932450666445]
本研究は,ハイウェイビデオ監視システムによる軌跡から異常運転行動を検出することに焦点を当てる。
本稿では,周囲の車上での走行動作を文脈的に把握できるリカレントグラフ注意ネットワークを用いたオートエンコーダを提案する。
私たちのモデルは何千もの車で大きな高速道路にスケーラブルです。
論文 参考訳(メタデータ) (2023-04-23T01:32:47Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
交通シーン構造を考慮したトポロジ推論のための最初のデータセットであるOpenLane-V2を提案する。
OpenLane-V2は2000のアノテートされた道路シーンで構成され、交通要素と車線との関係を記述している。
様々な最先端手法を評価し,OpenLane-V2の定量的,定性的な結果を示し,交通現場におけるトポロジ推論の今後の道筋を示す。
論文 参考訳(メタデータ) (2023-04-20T16:31:22Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
本研究では,現実の運転において頻繁に発生する多様な事故シナリオを含む大規模データセットを提案する。
提案したDeepAccidentデータセットには57Kの注釈付きフレームと285Kの注釈付きサンプルが含まれており、これは大規模なnuScenesデータセットの約7倍である。
論文 参考訳(メタデータ) (2023-04-03T17:37:00Z) - Traffic Scene Parsing through the TSP6K Dataset [109.69836680564616]
高品質なピクセルレベルのアノテーションとインスタンスレベルのアノテーションを備えた,TSP6Kと呼ばれる特殊なトラフィック監視データセットを導入する。
データセットは、既存の運転シーンの何倍ものトラフィック参加者を持つ、より混雑した交通シーンをキャプチャする。
交通シーンの異なるセマンティック領域の詳細を復元するシーン解析のためのディテールリフィニングデコーダを提案する。
論文 参考訳(メタデータ) (2023-03-06T02:05:14Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
本稿では,交通監視用交差点における事故検出のための新しい効率的な枠組みを提案する。
提案手法は,最先端のYOLOv4法に基づく効率的かつ高精度な物体検出を含む,3つの階層的なステップから構成される。
提案フレームワークのロバスト性は,様々な照明条件でYouTubeから収集した映像シーケンスを用いて評価する。
論文 参考訳(メタデータ) (2022-08-12T19:07:20Z) - Interaction Detection Between Vehicles and Vulnerable Road Users: A Deep
Generative Approach with Attention [9.442285577226606]
交差点における相互作用検出のための条件生成モデルを提案する。
道路利用者の行動の連続性に関する膨大な映像データを自動解析することを目的としています。
モデルの有効性は実世界のデータセットでテストすることによって検証された。
論文 参考訳(メタデータ) (2021-05-09T10:03:55Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
本稿では、歩行者を共同で検出し、32の歩行者属性を認識するという課題に対処する。
本稿では,複合フィールドフレームワークを用いたマルチタスク学習(MTL)モデルを提案する。
競合検出と属性認識の結果と,より安定したMTLトレーニングを示す。
論文 参考訳(メタデータ) (2020-12-04T15:10:12Z) - DAWN: Vehicle Detection in Adverse Weather Nature Dataset [4.09920839425892]
本研究では,DAWNと呼ばれる各種気象条件下で収集した実世界の画像からなる新しいデータセットを提案する。
このデータセットは、実際の交通環境から1000枚の画像を集め、霧、雪、雨、砂嵐の4つの天候条件に分けられる。
このデータは,車両検知システムの性能に及ぼす悪天候の影響の解明に有効である。
論文 参考訳(メタデータ) (2020-08-12T15:48:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。