American Twitter Users Revealed Social Determinants-related Oral Health
Disparities amid the COVID-19 Pandemic
- URL: http://arxiv.org/abs/2109.07652v2
- Date: Thu, 4 Aug 2022 17:04:14 GMT
- Title: American Twitter Users Revealed Social Determinants-related Oral Health
Disparities amid the COVID-19 Pandemic
- Authors: Yangxin Fan, Hanjia Lyu, Jin Xiao, Jiebo Luo
- Abstract summary: We collected oral health-related tweets during the COVID-19 pandemic from 9,104 Twitter users across 26 states.
Women and younger adults (19-29) are more likely to talk about oral health problems.
People from counties at a higher risk of COVID-19 talk more about tooth decay/gum bleeding and chipped tooth/tooth break.
- Score: 72.44305630014534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objectives: To assess self-reported population oral health conditions amid
COVID-19 pandemic using user reports on Twitter. Method and Material: We
collected oral health-related tweets during the COVID-19 pandemic from 9,104
Twitter users across 26 states (with sufficient samples) in the United States
between November 12, 2020 and June 14, 2021. We inferred user demographics by
leveraging the visual information from the user profile images. Other
characteristics including income, population density, poverty rate, health
insurance coverage rate, community water fluoridation rate, and relative change
in the number of daily confirmed COVID-19 cases were acquired or inferred based
on retrieved information from user profiles. We performed logistic regression
to examine whether discussions vary across user characteristics. Results:
Overall, 26.70% of the Twitter users discuss wisdom tooth pain/jaw hurt, 23.86%
tweet about dental service/cavity, 18.97% discuss chipped tooth/tooth break,
16.23% talk about dental pain, and the rest are about tooth decay/gum bleeding.
Women and younger adults (19-29) are more likely to talk about oral health
problems. Health insurance coverage rate is the most significant predictor in
logistic regression for topic prediction. Conclusion: Tweets inform social
disparities in oral health during the pandemic. For instance, people from
counties at a higher risk of COVID-19 talk more about tooth decay/gum bleeding
and chipped tooth/tooth break. Older adults, who are vulnerable to COVID-19,
are more likely to discuss dental pain. Topics of interest vary across user
characteristics. Through the lens of social media, our findings may provide
insights for oral health practitioners and policy makers.
Related papers
- "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - Know it to Defeat it: Exploring Health Rumor Characteristics and
Debunking Efforts on Chinese Social Media during COVID-19 Crisis [65.74516068984232]
We conduct a comprehensive analysis of four months of rumor-related online discussion during COVID-19 on Weibo, a Chinese microblogging site.
Results suggest that the dread (cause fear) type of health rumors provoked significantly more discussions and lasted longer than the wish (raise hope) type.
We show the efficacy of debunking in suppressing rumor discussions, which is time-sensitive and varies across rumor types and debunkers.
arXiv Detail & Related papers (2021-09-25T14:02:29Z) - Global Tweet Mentions of COVID-19 [3.3043776328952226]
We present an open-source dataset of 1.92 million keyword-selected Twitter posts, updated weekly from January 2020 to present.
The dashboard presents 100% of the geotagged tweets that contain keywords or hashtags related COVID-19.
With emerging COVID variants but ongoing vaccine hesitancy and resistance, this dataset could be used by researchers to study numerous aspects of COVID-19.
arXiv Detail & Related papers (2021-08-13T20:21:29Z) - COVID-19 Vaccine and Social Media: Exploring Emotions and Discussions on
Twitter [9.834635805575582]
Public response to COVID-19 vaccines is the key success factor to control the COVID-19 pandemic.
Traditional surveys are expensive and time-consuming, address limited health topics, and obtain small-scale data.
This study proposes an approach using computational and human coding methods to collect and analyze a large number of tweets.
arXiv Detail & Related papers (2021-07-29T17:31:11Z) - COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal
Understanding of the Pandemic with Social Media Conversations [4.07452542897703]
Social media platforms have served as a vehicle for the global conversation about COVID-19.
We present a framework for analysis, mining, and tracking the critical content and characteristics of social media conversations around the pandemic.
arXiv Detail & Related papers (2021-04-22T00:45:50Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z) - Twitter discussions and emotions about COVID-19 pandemic: a machine
learning approach [0.0]
We analyze 4 million Twitter messages related to the COVID-19 pandemic using a list of 25 hashtags such as "coronavirus," "COVID-19," "quarantine" from March 1 to April 21 in 2020.
We identify 13 discussion topics and categorize them into five different themes, such as "public health measures to slow the spread of COVID-19," "social stigma associated with COVID-19," "coronavirus news cases and deaths," "COVID-19 in the United States," and "coronavirus cases in the rest of the world"
arXiv Detail & Related papers (2020-05-26T16:10:02Z) - Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions [1.6571886312953874]
An estimated 2.95 billion people in 2019 used social media worldwide.
The widespread of the Coronavirus COVID-19 resulted with a tsunami of social media.
This paper presents a large-scale study based on data mined from Twitter.
arXiv Detail & Related papers (2020-05-18T15:53:13Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
Pandemic of the novel Coronavirus Disease 2019 (COVID-19) has presented governments with ultimate challenges.
In the United States, the country with the highest confirmed COVID-19 infection cases, a nationwide social distancing protocol has been implemented by the President.
This paper aims to discover the social implications of this unprecedented disruption in our interactive society by mining people's opinions on social media.
arXiv Detail & Related papers (2020-04-21T13:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.