論文の概要: Language Models are Few-shot Multilingual Learners
- arxiv url: http://arxiv.org/abs/2109.07684v1
- Date: Thu, 16 Sep 2021 03:08:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-17 14:15:28.918061
- Title: Language Models are Few-shot Multilingual Learners
- Title(参考訳): 言語モデルと多言語学習者
- Authors: Genta Indra Winata, Andrea Madotto, Zhaojiang Lin, Rosanne Liu, Jason
Yosinski, Pascale Fung
- Abstract要約: 我々は、非英語言語における多言語分類を行う際に、GPTモデルとT5モデルの多言語的スキルを評価する。
文脈としての英語の例を見ると、事前学習された言語モデルは、英語のテストサンプルだけでなく、英語以外のサンプルも予測できることが示されている。
- 参考スコア(独自算出の注目度): 66.11011385895195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: General-purpose language models have demonstrated impressive capabilities,
performing on par with state-of-the-art approaches on a range of downstream
natural language processing (NLP) tasks and benchmarks when inferring
instructions from very few examples. Here, we evaluate the multilingual skills
of the GPT and T5 models in conducting multi-class classification on
non-English languages without any parameter updates. We show that, given a few
English examples as context, pre-trained language models can predict not only
English test samples but also non-English ones. Finally, we find the in-context
few-shot cross-lingual prediction results of language models are significantly
better than random prediction, and they are competitive compared to the
existing state-of-the-art cross-lingual models.
- Abstract(参考訳): 汎用言語モデルは、非常に少数の例から命令を推測する際に、さまざまな下流自然言語処理(NLP)タスクやベンチマークに対する最先端のアプローチと同等の性能を発揮している。
本稿では,パラメータ更新を伴わずに非英語言語における多クラス分類を行う際に,gptとt5モデルの多言語スキルを評価する。
文脈としての英語の例を見ると、事前学習された言語モデルは、英語のテストサンプルだけでなく、英語以外のサンプルも予測できる。
最後に,言語モデルの文脈内小文字間予測結果がランダム予測よりも有意に優れており,既存の言語間予測モデルと比較して競争力が高いことがわかった。
関連論文リスト
- Few-shot Subgoal Planning with Language Models [58.11102061150875]
事前訓練された言語モデルにエンコードされた言語は、細粒度のサブゴール列を推測できることを示す。
サブゴナル・インスペクションを強く仮定する最近の手法とは対照的に,我々の実験では,詳細なサブゴラル・シーケンスを微調整せずに推論できる言語モデルが示されている。
論文 参考訳(メタデータ) (2022-05-28T01:03:30Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z) - Multilingual Generative Language Models for Zero-Shot Cross-Lingual
Event Argument Extraction [80.61458287741131]
ゼロショット言語間イベント引数抽出(EAE)における多言語事前学習型生成言語モデルの活用について検討する。
EAEを言語生成タスクとして定式化することにより、イベント構造を効果的にエンコードし、引数間の依存関係をキャプチャする。
提案するモデルでは,多言語事前学習型生成言語モデルを用いて,入力文から抽出した引数で言語に依存しないテンプレートを補う文を生成する。
論文 参考訳(メタデータ) (2022-03-15T23:00:32Z) - Cross-Lingual Fine-Grained Entity Typing [26.973783464706447]
本稿では,100以上の言語を処理可能な,言語間を包含したエンティティタイピングモデルを提案する。
このモデルが学習中に見つからない言語やエンティティに一般化する能力について分析する。
論文 参考訳(メタデータ) (2021-10-15T03:22:30Z) - On the ability of monolingual models to learn language-agnostic
representations [2.604227467422371]
異なる言語で事前訓練および微調整された単言語モデルが競合性能を実現することを示す。
例えば、ドイツ語やポルトガル語のような遠方の言語で事前訓練されたモデルは、英語のタスクでも同様に機能する。
論文 参考訳(メタデータ) (2021-09-04T22:09:44Z) - On the Multilingual Capabilities of Very Large-Scale English Language
Models [0.0]
GPT(Generative Pre-trained Transformer)は、機械学習の歴史において、前例のない規模に拡張されている。
本研究では,GPT-3の多言語的スキルについて検討し,事前学習用コーパスであるカタルーニャ語にはほとんど現れない1つの言語に着目した。
このモデルでは、特に生成タスクにおいて、主に言語理解タスクでは予測可能な制限があるが、ゼロショットシナリオでは顕著な結果が得られる。
論文 参考訳(メタデータ) (2021-08-30T16:18:50Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - Probing Multilingual Language Models for Discourse [0.0]
XLM-RoBERTaファミリーのモデルが常に最高のパフォーマンスを示していることが分かりました。
また, モデル蒸留は, 文表現の言語間移動能力に悪影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-09T06:34:21Z) - Pre-Training a Language Model Without Human Language [74.11825654535895]
先行学習データの本質的性質が下流性能の微調整にどのように寄与するかを検討する。
非構造化データで事前に訓練されたモデルは、下流のタスクでゼロから訓練されたモデルに勝った。
驚くべきことに、特定の非人間言語データの事前トレーニングがGLUEのパフォーマンスを他の非英語言語で事前トレーニングされたパフォーマンスに近づけることを明らかにしました。
論文 参考訳(メタデータ) (2020-12-22T13:38:06Z) - Parsing with Multilingual BERT, a Small Corpus, and a Small Treebank [46.626315158735615]
事前訓練された多言語文脈表現は大きな成功を収めてきたが、事前訓練されたデータの制限のため、すべての言語品種に等しく適用されない。
このことは、ラベル付き未ラベルデータがモノリンガルモデルを効果的に訓練するにはあまりに限られている、これらのモデルに馴染みのない言語多様体にとっての課題である。
本稿では,低リソース環境に多言語モデルを適用するために,言語固有の事前学習と語彙拡張の利用を提案する。
論文 参考訳(メタデータ) (2020-09-29T16:12:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。