論文の概要: Compact Binary Fingerprint for Image Copy Re-Ranking
- arxiv url: http://arxiv.org/abs/2109.07802v1
- Date: Thu, 16 Sep 2021 08:44:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-17 23:54:58.197290
- Title: Compact Binary Fingerprint for Image Copy Re-Ranking
- Title(参考訳): 画像コピー再ランキング用コンパクトバイナリ指紋
- Authors: Nazar Mohammad, Junaid Baber, Maheen Bakhtyar, Bilal Ahmed Chandio,
Anwar Ali Sanjrani
- Abstract要約: 画像コピー検出はコンピュータビジョンと信号処理において困難で魅力的なトピックである。
SIFTなどのローカルキーポイントディスクリプタを使用して画像を表現する。
特徴量を定量化し、精度の低下を犠牲にして、大規模データベースに対して探索・マッチングを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image copy detection is challenging and appealing topic in computer vision
and signal processing. Recent advancements in multimedia have made distribution
of image across the global easy and fast: that leads to many other issues such
as forgery and image copy retrieval.
Local keypoint descriptors such as SIFT are used to represent the images, and
based on those descriptors matching, images are matched and retrieved. Features
are quantized so that searching/matching may be made feasible for large
databases at the cost of accuracy loss. In this paper, we propose binary
feature that is obtained by quantizing the SIFT into binary, and rank list is
re-examined to remove the false positives. Experiments on challenging dataset
shows the gain in accuracy and time.
- Abstract(参考訳): 画像コピー検出はコンピュータビジョンと信号処理において困難で魅力的なトピックである。
近年のマルチメディアの進歩により、グローバルな画像の配布は容易かつ迅速になり、偽造や画像コピー検索といった多くの問題に繋がる。
siftのようなローカルキーポイントディスクリプタは画像を表現するために使用され、それらのディスクリプタマッチングに基づいて、画像がマッチして検索される。
機能は定量化され、精度を損なうことなく、大規模なデータベースで検索/マッチングが実現可能になる。
本稿では,SIFTを2進数に量子化し,ランクリストを再検討し,偽陽性を除去する二進数特徴を提案する。
挑戦的なデータセットの実験は、精度と時間の上昇を示しています。
関連論文リスト
- Active Image Indexing [26.33727468288776]
本稿では,能動インデックス化による画像コピー検出のロバスト性の向上について述べる。
我々は、画像が解放される前に、画像に知覚不可能な変化を加えることにより、所定の画像表現の量子化損失を低減する。
実験により, アクティベート画像の検索とコピー検出が大幅に改善された。
論文 参考訳(メタデータ) (2022-10-05T17:55:15Z) - Document Image Binarization in JPEG Compressed Domain using Dual
Discriminator Generative Adversarial Networks [0.0]
提案したモデルは、穴、消し去られた、あるいは汚されたインク、粉塵、ずれた繊維といった課題を持つDIBCOデータセットのさまざまなバージョンで徹底的にテストされている。
このモデルは非常に堅牢で、時間と空間の複雑さの両面で効率的であることが証明され、JPEG圧縮領域における最先端の性能がもたらされた。
論文 参考訳(メタデータ) (2022-09-13T12:07:32Z) - SImProv: Scalable Image Provenance Framework for Robust Content
Attribution [80.25476792081403]
我々は、クエリ画像を元の信頼できるデータベースにマッチングするフレームワークであるSImProvを提示する。
SimProvは3つのステージで構成されている。トップkの最も類似した画像を検索するためのスケーラブルな検索ステージと、候補の中からオリジナルを識別するための再ランク付けとほぼ重複した検出ステージである。
1億画像のデータセット上での効率的な検索と操作の検出を実証する。
論文 参考訳(メタデータ) (2022-06-28T18:42:36Z) - Revisiting Consistency Regularization for Semi-supervised Change
Detection in Remote Sensing Images [60.89777029184023]
教師付きクロスエントロピー(CE)損失に加えて、教師なしCD損失を定式化する半教師付きCDモデルを提案する。
2つの公開CDデータセットを用いて実験を行った結果,提案手法は教師付きCDの性能に近づきやすいことがわかった。
論文 参考訳(メタデータ) (2022-04-18T17:59:01Z) - A Self-Supervised Descriptor for Image Copy Detection [13.624995441674642]
本稿では,自己監督型コントラスト学習目標に基づくモデルであるSSCDを紹介する。
本手法は,アーキテクチャと学習目標を変更することで,コピー検出タスクに適応する。
このアプローチはエントロピー正規化項に依存し、記述子ベクトル間の一貫した分離を促進する。
論文 参考訳(メタデータ) (2022-02-21T14:25:32Z) - The 2021 Image Similarity Dataset and Challenge [32.202821997745716]
本稿では,大規模画像類似度検出のための新しいベンチマークを提案する。
目標は、クエリイメージが、サイズ100万の参照コーパス内の任意のイメージの修正コピーであるかどうかを決定することである。
論文 参考訳(メタデータ) (2021-06-17T17:23:59Z) - Compositional Sketch Search [91.84489055347585]
フリーハンドスケッチを用いて画像コレクションを検索するアルゴリズムを提案する。
シーン構成全体を特定するための簡潔で直感的な表現として描画を利用する。
論文 参考訳(メタデータ) (2021-06-15T09:38:09Z) - Benchmarking Scientific Image Forgery Detectors [18.225190509954874]
本稿では,研究コミュニティが報告した最も一般的な画像偽造操作を再現する,拡張可能なオープンソースライブラリを提案する。
我々は、富裕層を有する大規模な科学的偽画像ベンチマーク(39,423画像)を作成する。
さらに,画像重複による抽出論文の多さを考慮し,提案したデータセットにおける最先端のコピー・モーブ検出手法の評価を行った。
論文 参考訳(メタデータ) (2021-05-26T22:58:20Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
ロスシー画像圧縮は、デジタル画像の最もよく使われる演算子の1つである。
Invertible Lossy Compression (ILC) と呼ばれる新しい非可逆的フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-22T04:04:56Z) - Compact Deep Aggregation for Set Retrieval [87.52470995031997]
画像の大規模データセットから複数の顔を含む画像を取得することに焦点を当てる。
ここでは、セットは各画像の顔記述子で構成され、複数のIDに対するクエリが与えられた後、すべてのIDを含む画像を取得することが目標である。
このコンパクトディスクリプタは,画像毎に最大2面まで識別性の低下が最小限に抑えられ,その後徐々に劣化することを示す。
論文 参考訳(メタデータ) (2020-03-26T08:43:15Z) - Discernible Image Compression [124.08063151879173]
本稿では、外観と知覚の整合性の両方を追求し、圧縮画像を作成することを目的とする。
エンコーダ・デコーダ・フレームワークに基づいて,事前学習したCNNを用いて,オリジナル画像と圧縮画像の特徴を抽出する。
ベンチマーク実験により,提案手法を用いて圧縮した画像は,その後の視覚認識・検出モデルでもよく認識できることが示された。
論文 参考訳(メタデータ) (2020-02-17T07:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。