Efficient Scaling of Dynamic Graph Neural Networks
- URL: http://arxiv.org/abs/2109.07893v1
- Date: Thu, 16 Sep 2021 11:51:20 GMT
- Title: Efficient Scaling of Dynamic Graph Neural Networks
- Authors: Venkatesan T. Chakaravarthy, Shivmaran S. Pandian, Saurabh Raje,
Yogish Sabharwal, Toyotaro Suzumura, Shashanka Ubaru
- Abstract summary: This is the first scaling study on dynamic Graph Neural Networks.
We devise mechanisms for reducing the GPU memory usage.
We design a graph difference-based strategy to significantly reduce the transfer time.
- Score: 7.313571385612325
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present distributed algorithms for training dynamic Graph Neural Networks
(GNN) on large scale graphs spanning multi-node, multi-GPU systems. To the best
of our knowledge, this is the first scaling study on dynamic GNN. We devise
mechanisms for reducing the GPU memory usage and identify two execution time
bottlenecks: CPU-GPU data transfer; and communication volume. Exploiting
properties of dynamic graphs, we design a graph difference-based strategy to
significantly reduce the transfer time. We develop a simple, but effective data
distribution technique under which the communication volume remains fixed and
linear in the input size, for any number of GPUs. Our experiments using
billion-size graphs on a system of 128 GPUs shows that: (i) the distribution
scheme achieves up to 30x speedup on 128 GPUs; (ii) the graph-difference
technique reduces the transfer time by a factor of up to 4.1x and the overall
execution time by up to 40%
Related papers
- Graph Transformers for Large Graphs [57.19338459218758]
This work advances representation learning on single large-scale graphs with a focus on identifying model characteristics and critical design constraints.
A key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism.
We report a 3x speedup and 16.8% performance gain on ogbn-products and snap-patents, while we also scale LargeGT on ogbn-100M with a 5.9% performance improvement.
arXiv Detail & Related papers (2023-12-18T11:19:23Z) - GNNFlow: A Distributed Framework for Continuous Temporal GNN Learning on
Dynamic Graphs [11.302970701867844]
We introduce GNNFlow, a distributed framework for efficient continuous temporal graph representation learning.
GNNFlow supports distributed training across multiple machines with static scheduling to ensure load balance.
Our experimental results show that GNNFlow provides up to 21.1x faster continuous learning than existing systems.
arXiv Detail & Related papers (2023-11-29T07:30:32Z) - Communication-Free Distributed GNN Training with Vertex Cut [63.22674903170953]
CoFree-GNN is a novel distributed GNN training framework that significantly speeds up the training process by implementing communication-free training.
We demonstrate that CoFree-GNN speeds up the GNN training process by up to 10 times over the existing state-of-the-art GNN training approaches.
arXiv Detail & Related papers (2023-08-06T21:04:58Z) - DistTGL: Distributed Memory-Based Temporal Graph Neural Network Training [18.52206409432894]
DistTGL is an efficient and scalable solution to train memory-based TGNNs on distributed GPU clusters.
In experiments, DistTGL achieves near-linear convergence speedup, outperforming state-of-the-art single-machine method by 14.5% in accuracy and 10.17x in training throughput.
arXiv Detail & Related papers (2023-07-14T22:52:27Z) - Scalable Graph Convolutional Network Training on Distributed-Memory
Systems [5.169989177779801]
Graph Convolutional Networks (GCNs) are extensively utilized for deep learning on graphs.
Since the convolution operation on graphs induces irregular memory access patterns, designing a memory- and communication-efficient parallel algorithm for GCN training poses unique challenges.
We propose a highly parallel training algorithm that scales to large processor counts.
arXiv Detail & Related papers (2022-12-09T17:51:13Z) - DOTIN: Dropping Task-Irrelevant Nodes for GNNs [119.17997089267124]
Recent graph learning approaches have introduced the pooling strategy to reduce the size of graphs for learning.
We design a new approach called DOTIN (underlineDrunderlineopping underlineTask-underlineIrrelevant underlineNodes) to reduce the size of graphs.
Our method speeds up GAT by about 50% on graph-level tasks including graph classification and graph edit distance.
arXiv Detail & Related papers (2022-04-28T12:00:39Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
Training of Relation Graph Convolutional Networks (R-GCN) does not scale well with the size of the graph.
In this work, we experiment with the use of graph summarization techniques to compress the graph.
We obtain reasonable results on the AIFB, MUTAG and AM datasets.
arXiv Detail & Related papers (2022-03-05T00:28:43Z) - Graph Neural Network Training with Data Tiering [16.02267628659034]
Graph Neural Networks (GNNs) have shown success in learning from graph-structured data, with applications to fraud detection, recommendation, and knowledge graph reasoning.
However, training GNN efficiently is challenging because 1) GPU memory capacity is limited and can be insufficient for large datasets, and 2) the graph-based data structure causes irregular data access patterns.
In this work, we provide a method to statistical analyze and identify more frequently accessed data ahead of GNN training.
arXiv Detail & Related papers (2021-11-10T19:35:10Z) - DistGNN: Scalable Distributed Training for Large-Scale Graph Neural
Networks [58.48833325238537]
Full-batch training on Graph Neural Networks (GNN) to learn the structure of large graphs is a critical problem that needs to scale to hundreds of compute nodes to be feasible.
In this paper, we presentGNN that optimize the well-known Deep Graph Library (DGL) for full-batch training on CPU clusters.
Our results on four common GNN benchmark datasets show up to 3.7x speed-up using a single CPU socket and up to 97x speed-up using 128 CPU sockets.
arXiv Detail & Related papers (2021-04-14T08:46:35Z) - Large Graph Convolutional Network Training with GPU-Oriented Data
Communication Architecture [19.2129567657739]
Graph Convolutional Networks (GCNs) are increasingly adopted in large-scale graph-based recommender systems.
Current GCN training systems keep the feature table in host memory and rely on the CPU to collect sparse features.
This approach, however, puts tremendous pressure on host memory bandwidth and the CPU.
We propose a novel GPU-oriented data communication approach for GCN training, where GPU threads directly access sparse features in host memory.
arXiv Detail & Related papers (2021-03-04T21:00:17Z) - Scaling Graph Neural Networks with Approximate PageRank [64.92311737049054]
We present the PPRGo model which utilizes an efficient approximation of information diffusion in GNNs.
In addition to being faster, PPRGo is inherently scalable, and can be trivially parallelized for large datasets like those found in industry settings.
We show that training PPRGo and predicting labels for all nodes in this graph takes under 2 minutes on a single machine, far outpacing other baselines on the same graph.
arXiv Detail & Related papers (2020-07-03T09:30:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.