A literature survey on student feedback assessment tools and their usage
in sentiment analysis
- URL: http://arxiv.org/abs/2109.07904v1
- Date: Thu, 9 Sep 2021 06:56:30 GMT
- Title: A literature survey on student feedback assessment tools and their usage
in sentiment analysis
- Authors: Himali Aryal
- Abstract summary: We evaluate the effectiveness of various in-class feedback assessment methods such as Kahoot!, Mentimeter, Padlet, and polling.
We propose a sentiment analysis model for extracting the explicit suggestions from the students' qualitative feedback comments.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Online learning is becoming increasingly popular, whether for convenience, to
accommodate work hours, or simply to have the freedom to study from anywhere.
Especially, during the Covid-19 pandemic, it has become the only viable option
for learning. The effectiveness of teaching various hard-core programming
courses with a mix of theoretical content is determined by the student
interaction and responses. In contrast to a digital lecture through Zoom or
Teams, a lecturer may rapidly acquire such responses from students' facial
expressions, behavior, and attitude in a physical session, even if the listener
is largely idle and non-interactive. However, student assessment in virtual
learning is a challenging task. Despite the challenges, different technologies
are progressively being integrated into teaching environments to boost student
engagement and motivation. In this paper, we evaluate the effectiveness of
various in-class feedback assessment methods such as Kahoot!, Mentimeter,
Padlet, and polling to assist a lecturer in obtaining real-time feedback from
students throughout a session and adapting the teaching style accordingly.
Furthermore, some of the topics covered by student suggestions include tutor
suggestions, enhancing teaching style, course content, and other subjects. Any
input gives the instructor valuable insight into how to improve the student's
learning experience, however, manually going through all of the qualitative
comments and extracting the ideas is tedious. Thus, in this paper, we propose a
sentiment analysis model for extracting the explicit suggestions from the
students' qualitative feedback comments.
Related papers
- Leveraging Large Language Models for Actionable Course Evaluation Student Feedback to Lecturers [6.161370712594005]
We have 742 student responses ranging over 75 courses in a Computer Science department.
For each course, we synthesise a summary of the course evaluations and actionable items for the instructor.
Our work highlights the possibility of using generative AI to produce factual, actionable, and appropriate feedback for teachers in the classroom setting.
arXiv Detail & Related papers (2024-07-01T13:29:55Z) - Enhancing Students' Learning Process Through Self-Generated Tests [0.0]
This paper describes an educational experiment aimed at the promotion of students' autonomous learning.
The main idea is to make the student feel part of the evaluation process by including students' questions in the evaluation exams.
Questions uploaded by students are visible to every enrolled student as well as to each involved teacher.
arXiv Detail & Related papers (2024-03-21T09:49:33Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
We use Language Models (LMs) as educational experts to assess the impact of various instructions on learning outcomes.
We introduce an instruction optimization approach in which one LM generates instructional materials using the judgments of another LM as a reward function.
Human teachers' evaluations of these LM-generated worksheets show a significant alignment between the LM judgments and human teacher preferences.
arXiv Detail & Related papers (2024-03-05T09:09:15Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
This paper introduces YODA, a teacher-student progressive learning framework.
It emulates the teacher-student education process to improve the efficacy of model fine-tuning.
Experiments show that training LLaMA2 with data from YODA improves SFT with significant performance gain.
arXiv Detail & Related papers (2024-01-28T14:32:15Z) - Scalable Two-Minute Feedback: Digital, Lecture-Accompanying Survey as a Continuous Feedback Instrument [0.0]
Detailed feedback on courses and lecture content is essential for their improvement and also serves as a tool for reflection.
The article used a digital survey format as formative feedback which attempts to measure student stress in a quantitative part and to address the participants' reflection in a qualitative part.
The results show a low, but constant rate of feedback. Responses mostly cover topics of the lecture content or organizational aspects and were intensively used to report issues within the lecture.
arXiv Detail & Related papers (2023-10-30T08:14:26Z) - PapagAI:Automated Feedback for Reflective Essays [48.4434976446053]
We present the first open-source automated feedback tool based on didactic theory and implemented as a hybrid AI system.
The main objective of our work is to enable better learning outcomes for students and to complement the teaching activities of lecturers.
arXiv Detail & Related papers (2023-07-10T11:05:51Z) - UKP-SQuARE: An Interactive Tool for Teaching Question Answering [61.93372227117229]
The exponential growth of question answering (QA) has made it an indispensable topic in any Natural Language Processing (NLP) course.
We introduce UKP-SQuARE as a platform for QA education.
Students can run, compare, and analyze various QA models from different perspectives.
arXiv Detail & Related papers (2023-05-31T11:29:04Z) - Real-time Attention Span Tracking in Online Education [0.0]
This paper intends to provide a mechanism that uses the camera feed and microphone input to monitor the real-time attention level of students during online classes.
We propose a system that uses five distinct non-verbal features to calculate the attention score of the student during computer based tasks and generate real-time feedback for both students and the organization.
arXiv Detail & Related papers (2021-11-29T17:05:59Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - How Does a Student-Centered Course on Communication and Professional
Skills Impact Students in the Long Run? [0.0]
This paper presents a long-term study about the effects of a student-centered course on students' thoughts, attitudes, and behavior.
The course is offered at a European university as part of a computer science master's program.
Our findings suggest that the course provided significant learning for the vast majority of respondents.
arXiv Detail & Related papers (2021-01-04T10:51:40Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
We build an end-to-end neural framework that automatically detects questions from teachers' audio recordings.
By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions.
arXiv Detail & Related papers (2020-05-16T02:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.