Real-time Attention Span Tracking in Online Education
- URL: http://arxiv.org/abs/2111.14707v1
- Date: Mon, 29 Nov 2021 17:05:59 GMT
- Title: Real-time Attention Span Tracking in Online Education
- Authors: Rahul RK, Shanthakumar S, Vykunth P, Sairamnath K
- Abstract summary: This paper intends to provide a mechanism that uses the camera feed and microphone input to monitor the real-time attention level of students during online classes.
We propose a system that uses five distinct non-verbal features to calculate the attention score of the student during computer based tasks and generate real-time feedback for both students and the organization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the last decade, e-learning has revolutionized how students learn by
providing them access to quality education whenever and wherever they want.
However, students often get distracted because of various reasons, which affect
the learning capacity to a great extent. Many researchers have been trying to
improve the quality of online education, but we need a holistic approach to
address this issue. This paper intends to provide a mechanism that uses the
camera feed and microphone input to monitor the real-time attention level of
students during online classes. We explore various image processing techniques
and machine learning algorithms throughout this study. We propose a system that
uses five distinct non-verbal features to calculate the attention score of the
student during computer based tasks and generate real-time feedback for both
students and the organization. We can use the generated feedback as a heuristic
value to analyze the overall performance of students as well as the teaching
standards of the lecturers.
Related papers
- Multimodal Classification of Teaching Activities from University Lecture
Recordings [0.9790236766474201]
We present a multimodal classification algorithm that identifies the type of activity that is being carried out at any time of the lesson.
Some academic activities are more easily identifiable with the audio signal while resorting to the text transcription is needed to identify others.
arXiv Detail & Related papers (2023-12-24T08:33:30Z) - Multimodality in Online Education: A Comparative Study [2.0472158451829827]
Current systems consider only a single cue with a lack of focus in the educational domain.
This paper highlights the need for a multimodal approach to affect recognition and its deployment in the online classroom.
It compares the various machine learning models available for each cue and provides the most suitable approach.
arXiv Detail & Related papers (2023-12-10T07:12:15Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Enhancing Textbooks with Visuals from the Web for Improved Learning [50.01434477801967]
In this paper, we investigate the effectiveness of vision-language models to automatically enhance textbooks with images from the web.
We collect a dataset of e-textbooks in the math, science, social science and business domains.
We then set up a text-image matching task that involves retrieving and appropriately assigning web images to textbooks.
arXiv Detail & Related papers (2023-04-18T12:16:39Z) - A Machine Learning system to monitor student progress in educational
institutes [0.0]
We propose a data driven approach that makes use of Machine Learning techniques to generate a classifier called credit score.
The proposal to use credit score as progress indicator is well suited to be used in a Learning Management System.
arXiv Detail & Related papers (2022-11-02T08:24:08Z) - Iterative Teacher-Aware Learning [136.05341445369265]
In human pedagogy, teachers and students can interact adaptively to maximize communication efficiency.
We propose a gradient optimization based teacher-aware learner who can incorporate teacher's cooperative intention into the likelihood function.
arXiv Detail & Related papers (2021-10-01T00:27:47Z) - A literature survey on student feedback assessment tools and their usage
in sentiment analysis [0.0]
We evaluate the effectiveness of various in-class feedback assessment methods such as Kahoot!, Mentimeter, Padlet, and polling.
We propose a sentiment analysis model for extracting the explicit suggestions from the students' qualitative feedback comments.
arXiv Detail & Related papers (2021-09-09T06:56:30Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - The Wits Intelligent Teaching System: Detecting Student Engagement
During Lectures Using Convolutional Neural Networks [0.30458514384586394]
The Wits Intelligent Teaching System (WITS) aims to assist lecturers with real-time feedback regarding student affect.
A CNN based on AlexNet is successfully trained and which significantly outperforms a Support Vector Machine approach.
arXiv Detail & Related papers (2021-05-28T12:59:37Z) - Point Adversarial Self Mining: A Simple Method for Facial Expression
Recognition [79.75964372862279]
We propose Point Adversarial Self Mining (PASM) to improve the recognition accuracy in facial expression recognition.
PASM uses a point adversarial attack method and a trained teacher network to locate the most informative position related to the target task.
The adaptive learning materials generation and teacher/student update can be conducted more than one time, improving the network capability iteratively.
arXiv Detail & Related papers (2020-08-26T06:39:24Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
We build an end-to-end neural framework that automatically detects questions from teachers' audio recordings.
By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions.
arXiv Detail & Related papers (2020-05-16T02:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.