論文の概要: Real Time Monocular Vehicle Velocity Estimation using Synthetic Data
- arxiv url: http://arxiv.org/abs/2109.07957v1
- Date: Thu, 16 Sep 2021 13:10:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-17 19:38:16.828356
- Title: Real Time Monocular Vehicle Velocity Estimation using Synthetic Data
- Title(参考訳): 合成データを用いたリアルタイム単眼走行速度推定
- Authors: Robert McCraith, Lukas Neumann, Andrea Vedaldi
- Abstract要約: 移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
- 参考スコア(独自算出の注目度): 78.85123603488664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision is one of the primary sensing modalities in autonomous driving. In
this paper we look at the problem of estimating the velocity of road vehicles
from a camera mounted on a moving car. Contrary to prior methods that train
end-to-end deep networks that estimate the vehicles' velocity from the video
pixels, we propose a two-step approach where first an off-the-shelf tracker is
used to extract vehicle bounding boxes and then a small neural network is used
to regress the vehicle velocity from the tracked bounding boxes. Surprisingly,
we find that this still achieves state-of-the-art estimation performance with
the significant benefit of separating perception from dynamics estimation via a
clean, interpretable and verifiable interface which allows us distill the
statistics which are crucial for velocity estimation. We show that the latter
can be used to easily generate synthetic training data in the space of bounding
boxes and use this to improve the performance of our method further.
- Abstract(参考訳): 視覚は自律運転における主要な感覚の1つである。
本稿では,移動車に搭載されたカメラから車両の速度を推定する問題について考察する。
ビデオ画素から車両の速度を推定するエンド・ツー・エンドのディープ・ネットワークを訓練する従来の手法とは対照的に,まずオフ・ザ・シェルフ・トラッカーを用いて車両のバウンディングボックスを抽出し,次に追跡されたバウンディングボックスから車両の速度を小さなニューラルネットワークでリセットする2段階のアプローチを提案する。
驚くべきことに、これは依然として最先端の予測性能を達成しており、速度推定に不可欠な統計を抽出できるクリーンで解釈可能で検証可能なインターフェースを通じて、動的推定から認識を分離する大きな利点がある。
本研究では,後者を用いて,有界箱空間における合成学習データを容易に生成し,これを用いて提案手法の性能をさらに向上できることを示す。
関連論文リスト
- FARSEC: A Reproducible Framework for Automatic Real-Time Vehicle Speed
Estimation Using Traffic Cameras [14.339217121537537]
ナビゲーションやロジスティクスなどの交通依存システムは、信頼性の高い速度推定の恩恵を受ける可能性がある。
我々は,公共交通カメラのより多様なデータに対処する,自動リアルタイム車両速度計算のための新しいフレームワークを提供する。
我々のフレームワークは、カメラの動きや異なるビデオストリーム入力などの現実的な条件を自動で処理できる。
論文 参考訳(メタデータ) (2023-09-25T19:02:40Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
本稿では,鳥の目視で道路配置と車両占有率によって形成された局所地図を再構築する新しい枠組みを提案する。
我々のモデルは1つのGPU上で25FPSで動作し、リアルタイムパノラマHDマップの再構築に有効である。
論文 参考訳(メタデータ) (2022-11-15T13:52:41Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - Multi-Stream Attention Learning for Monocular Vehicle Velocity and
Inter-Vehicle Distance Estimation [25.103483428654375]
車両速度と車間距離の推定は、ADAS(Advanced driver-assistance system)と自律走行車にとって不可欠である。
近年の研究では、低コストの単眼カメラを用いて、車周りの環境をデータ駆動方式で知覚することに焦点を当てている。
MSANetは、例えば、共同走行速度と車間距離推定のための空間的特徴と文脈的特徴の異なる特徴を抽出するために提案されている。
論文 参考訳(メタデータ) (2021-10-22T06:14:12Z) - Data-driven vehicle speed detection from synthetic driving simulator
images [0.440401067183266]
運転シミュレータから生成された合成画像を用いて車両の速度検出について検討する。
複数の速度、車両の種類や色、照明や気象条件に応じた可変性を持つ数千の画像を生成します。
CNN-GRUや3D-CNNなど,画像のシーケンスを出力速度(回帰)にマッピングする2つのアプローチについて検討した。
論文 参考訳(メタデータ) (2021-04-20T11:26:13Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
本稿では,ディープニューラルネットワークのエンドツーエンドトレーニングに基づくカメラによる車間距離と相対速度推定手法を提案する。
提案手法の重要な特徴は,2つの時間的単眼フレームによって提供される複数の視覚的手がかりの統合である。
また,移動場における視線歪みの影響を緩和する車両中心サンプリング機構を提案する。
論文 参考訳(メタデータ) (2020-06-07T08:18:31Z) - Traffic Data Imputation using Deep Convolutional Neural Networks [2.7647400328727256]
我々は、よく訓練されたニューラルネットワークが、時間空間図から交通速度のダイナミクスを学習できることを示します。
提案手法は, 車両の侵入プローブレベルを5%以下に抑えることで, マクロな交通速度を再現できることを示す。
論文 参考訳(メタデータ) (2020-01-21T12:52:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。