論文の概要: Raising context awareness in motion forecasting
- arxiv url: http://arxiv.org/abs/2109.08048v1
- Date: Thu, 16 Sep 2021 15:25:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-17 14:09:04.722110
- Title: Raising context awareness in motion forecasting
- Title(参考訳): 動き予測における文脈認識の促進
- Authors: H\'edi Ben-Younes, \'Eloi Zablocki, Micka\"el Chen, Patrick P\'erez,
Matthieu Cord
- Abstract要約: 本稿では,意味的文脈情報の利用を促進するためのトレーニング手順を備えた動き予測モデルであるCABを紹介する。
また、連続した予測の時間的一貫性を測定するために、分散と収束から範囲への2つの新しい指標も導入する。
提案手法は,広く採用されているnuScenes予測ベンチマークを用いて評価する。
- 参考スコア(独自算出の注目度): 30.86735692571529
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Learning-based trajectory prediction models have encountered great success,
with the promise of leveraging contextual information in addition to motion
history. Yet, we find that state-of-the-art forecasting methods tend to overly
rely on the agent's dynamics, failing to exploit the semantic cues provided at
its input. To alleviate this issue, we introduce CAB, a motion forecasting
model equipped with a training procedure designed to promote the use of
semantic contextual information. We also introduce two novel metrics --
dispersion and convergence-to-range -- to measure the temporal consistency of
successive forecasts, which we found missing in standard metrics. Our method is
evaluated on the widely adopted nuScenes Prediction benchmark.
- Abstract(参考訳): 学習に基づく軌道予測モデルは非常に成功しており、動き履歴に加えて文脈情報を活用することを約束している。
しかし、最先端の予測手法はエージェントのダイナミクスに過度に依存する傾向にあり、入力時に提供される意味的手がかりを活用できない。
そこで本研究では,意味的文脈情報の利用を促進するためのトレーニング手順を備えた動き予測モデルであるCABを紹介する。
また、連続する予測の時間的一貫性を測定するために、2つの新しい指標(分散と収束-距離)を導入する。
本手法は,広く採用されているnuScenes予測ベンチマークで評価する。
関連論文リスト
- Deconfounding Time Series Forecasting [1.5967186772129907]
時系列予測は様々な領域において重要な課題であり、正確な予測は情報的な意思決定を促進する。
従来の予測手法は、しばしば将来の結果を予測するために変数の現在の観測に依存している。
本稿では,過去のデータから得られた潜在的共同設立者の表現を取り入れた予測手法を提案する。
論文 参考訳(メタデータ) (2024-10-27T12:45:42Z) - Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
本稿では、時系列イベント予測を強化するアプローチであるFuture-Guided Learningを紹介する。
提案手法は,重要な事象を特定するために将来的なデータを解析する検出モデルと,これらの事象を現在のデータに基づいて予測する予測モデルである。
予測モデルと検出モデルの間に不一致が発生した場合、予測モデルはより実質的な更新を行う。
論文 参考訳(メタデータ) (2024-10-19T21:22:55Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Prediction of rare events in the operation of household equipment using
co-evolving time series [1.1249583407496218]
我々のアプローチは、データの時間的挙動を利用して予測能力を向上する重み付き自己回帰モデルである。
合成および実世界のデータセットの評価は、我々の手法が家庭機器の故障予測手法よりも優れていることを裏付けている。
論文 参考訳(メタデータ) (2023-12-15T00:21:00Z) - Enhancing Trajectory Prediction through Self-Supervised Waypoint Noise
Prediction [9.385936248154987]
軌道予測は、未来の軌道を予測するために、交通機関の不確定の性質をモデル化する重要なタスクである。
SSWNP(Self-Supervised Waypoint Noise Prediction)と呼ばれる新しい手法を提案する。
提案手法では,経路点の空間的領域にまたがる過去の観測軌跡の,クリーンでノイズを増進したビューを作成する。
論文 参考訳(メタデータ) (2023-11-26T19:03:41Z) - Towards Motion Forecasting with Real-World Perception Inputs: Are
End-to-End Approaches Competitive? [93.10694819127608]
実世界の知覚入力を用いた予測手法の統一評価パイプラインを提案する。
我々の詳細な調査では、キュレートされたデータから知覚ベースのデータへ移行する際の大きなパフォーマンスギャップが明らかになりました。
論文 参考訳(メタデータ) (2023-06-15T17:03:14Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
我々は、複数のモデルを含む人間のポーズ予測のためのオープンソースのライブラリを開発し、複数のデータセットをサポートする。
我々は、パフォーマンスを高め、より良い信頼をもたらすために、問題の2つの不確実性を考案する。
論文 参考訳(メタデータ) (2023-04-13T17:56:08Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
自己整合性制約を用いた動き予測をブートストラップする新しい枠組みを提案する。
運動予測タスクは、過去の空間的・時間的情報を組み込むことで、車両の将来の軌跡を予測することを目的としている。
提案手法は,既存手法の予測性能を常に向上することを示す。
論文 参考訳(メタデータ) (2022-04-12T14:59:48Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
本研究では,人混みの軌跡を予測できるニューラルネットワークシステムを提案する。
解釈可能なルールベースのインテントを学び、ニューラルネットワークの表現可能性を利用してシーン固有の残差をモデル化する。
私たちのアーキテクチャは、インタラクション中心のベンチマークTrajNet++でテストされています。
論文 参考訳(メタデータ) (2021-05-07T09:22:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。