Raising context awareness in motion forecasting
- URL: http://arxiv.org/abs/2109.08048v1
- Date: Thu, 16 Sep 2021 15:25:27 GMT
- Title: Raising context awareness in motion forecasting
- Authors: H\'edi Ben-Younes, \'Eloi Zablocki, Micka\"el Chen, Patrick P\'erez,
Matthieu Cord
- Abstract summary: We introduce CAB, a motion forecasting model equipped with a training procedure designed to promote the use of semantic contextual information.
We also introduce two novel metrics -- dispersion and convergence-to-range -- to measure the temporal consistency of successive forecasts.
Our method is evaluated on the widely adopted nuScenes Prediction benchmark.
- Score: 30.86735692571529
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Learning-based trajectory prediction models have encountered great success,
with the promise of leveraging contextual information in addition to motion
history. Yet, we find that state-of-the-art forecasting methods tend to overly
rely on the agent's dynamics, failing to exploit the semantic cues provided at
its input. To alleviate this issue, we introduce CAB, a motion forecasting
model equipped with a training procedure designed to promote the use of
semantic contextual information. We also introduce two novel metrics --
dispersion and convergence-to-range -- to measure the temporal consistency of
successive forecasts, which we found missing in standard metrics. Our method is
evaluated on the widely adopted nuScenes Prediction benchmark.
Related papers
- Deconfounding Time Series Forecasting [1.5967186772129907]
Time series forecasting is a critical task in various domains, where accurate predictions can drive informed decision-making.
Traditional forecasting methods often rely on current observations of variables to predict future outcomes.
We propose an enhanced forecasting approach that incorporates representations of latent confounders derived from historical data.
arXiv Detail & Related papers (2024-10-27T12:45:42Z) - Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting.
Our approach involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on present data.
When discrepancies arise between the forecasting and detection models, the forecasting model undergoes more substantial updates.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Prediction of rare events in the operation of household equipment using
co-evolving time series [1.1249583407496218]
Our approach involves a weighted autologistic regression model, where we leverage the temporal behavior of the data to enhance predictive capabilities.
Evaluation on synthetic and real-world datasets confirms that our approach outperform state-of-the-art of predicting home equipment failure methods.
arXiv Detail & Related papers (2023-12-15T00:21:00Z) - Enhancing Trajectory Prediction through Self-Supervised Waypoint Noise
Prediction [9.385936248154987]
Trajectory prediction is an important task that involves modeling the indeterminate nature of traffic actors to forecast future trajectories.
We propose a novel approach called SSWNP (Self-Supervised Waypoint Noise Prediction)
In our approach, we first create clean and noise-augmented views of past observed trajectories across the spatial domain of waypoints.
arXiv Detail & Related papers (2023-11-26T19:03:41Z) - Towards Motion Forecasting with Real-World Perception Inputs: Are
End-to-End Approaches Competitive? [93.10694819127608]
We propose a unified evaluation pipeline for forecasting methods with real-world perception inputs.
Our in-depth study uncovers a substantial performance gap when transitioning from curated to perception-based data.
arXiv Detail & Related papers (2023-06-15T17:03:14Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
We present a novel framework to bootstrap Motion forecasting with Self-consistent Constraints.
The motion forecasting task aims at predicting future trajectories of vehicles by incorporating spatial and temporal information from the past.
We show that our proposed scheme consistently improves the prediction performance of several existing methods.
arXiv Detail & Related papers (2022-04-12T14:59:48Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
We propose a neural network-based system to predict human trajectory in crowds.
We learn interpretable rule-based intents, and then utilise the expressibility of neural networks to model scene-specific residual.
Our architecture is tested on the interaction-centric benchmark TrajNet++.
arXiv Detail & Related papers (2021-05-07T09:22:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.