論文の概要: Towards agricultural autonomy: crop row detection under varying field
conditions using deep learning
- arxiv url: http://arxiv.org/abs/2109.08247v1
- Date: Thu, 16 Sep 2021 23:12:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-20 14:44:46.880235
- Title: Towards agricultural autonomy: crop row detection under varying field
conditions using deep learning
- Title(参考訳): 農業自立に向けて:深層学習による異なる畑条件下での作物列の検出
- Authors: Rajitha de Silva, Grzegorz Cielniak, Junfeng Gao
- Abstract要約: 本稿では,深層学習に基づく作出行検出のためのセマンティックセマンティックセグメンテーション手法の堅牢性を評価するための新しい指標を提案する。
様々なフィールド条件下で遭遇する10のカテゴリのデータセットをテストに使用した。
これらの条件が作物列検出の角精度に及ぼす影響を比較検討した。
- 参考スコア(独自算出の注目度): 4.252146169134215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel metric to evaluate the robustness of deep
learning based semantic segmentation approaches for crop row detection under
different field conditions encountered by a field robot. A dataset with ten
main categories encountered under various field conditions was used for
testing. The effect on these conditions on the angular accuracy of crop row
detection was compared. A deep convolutional encoder decoder network is
implemented to predict crop row masks using RGB input images. The predicted
mask is then sent to a post processing algorithm to extract the crop rows. The
deep learning model was found to be robust against shadows and growth stages of
the crop while the performance was reduced under direct sunlight, increasing
weed density, tramlines and discontinuities in crop rows when evaluated with
the novel metric.
- Abstract(参考訳): 本稿では,フィールドロボットが遭遇する異なるフィールド条件下での作物列検出のための,深層学習に基づく意味セグメンテーション手法のロバスト性を評価するための新しい指標を提案する。
様々なフィールド条件下で遭遇する10のカテゴリのデータセットをテストに使用した。
これらの条件が作物列検出の角精度に及ぼす影響を比較した。
深部畳み込みエンコーダデコーダネットワークを実装し,RGB入力画像を用いた作出行マスクの予測を行う。
予測されたマスクは後処理アルゴリズムに送られ、作物の列を抽出する。
深層学習モデルは, 直射日光下での性能が低下する一方, 作物の影や生育段階に対して頑健であり, 新たな指標で評価すると, 雑草密度, トランポリンおよび不連続性が増大することがわかった。
関連論文リスト
- Productive Crop Field Detection: A New Dataset and Deep Learning
Benchmark Results [1.2233362977312945]
精密農業において、生産的作物畑の検出は、農家が作業性能を評価するための必須の慣行である。
従来の研究では、先進的な機械学習アルゴリズムを用いて、作物畑を検出する様々な方法が研究されている。
本稿では,マシン操作とSentinel-2画像を組み合わせた高品質なデータセットを提案する。
論文 参考訳(メタデータ) (2023-05-19T20:30:59Z) - Vision based Crop Row Navigation under Varying Field Conditions in
Arable Fields [6.088167023055281]
そこで本研究では,サトウキビとトウモロコシの11種類の畑種を用いた作物列検出用データセットを提案する。
また,作物列フィールドにおける視覚サーボのための新しい作物列検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-28T11:23:34Z) - Deep learning-based Crop Row Detection for Infield Navigation of
Agri-Robots [10.386591972977207]
本稿では、安価なカメラを用いて、フィールド変動に耐えられるロバストな作物列検出アルゴリズムを提案する。
複数の生育段階、光度、雑草密度の変化、曲がりくねった作物の列、不連続な作物の列からなる11のフィールド変動を表すサトウキビ画像のデータセットを作成した。
提案アルゴリズムは, 基準値よりも高いフィールド条件下で, 頑健な視覚に基づく作物の列検出を実証した。
論文 参考訳(メタデータ) (2022-09-09T12:47:24Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
本稿では,スパース入力センサビューから観測される大規模な屋外運転シーンをモデル化することで,NeRFを大幅に改善するCLONeRを提案する。
これは、NeRFフレームワーク内の占有率と色学習を、それぞれLiDARとカメラデータを用いてトレーニングされた個別のMulti-Layer Perceptron(MLP)に分離することで実現される。
さらに,NeRFモデルと平行に3D Occupancy Grid Maps(OGM)を構築する手法を提案し,この占有グリッドを利用して距離空間のレンダリングのために線に沿った点のサンプリングを改善する。
論文 参考訳(メタデータ) (2022-09-02T17:44:50Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
種子の成熟度モニタリングは、気候変動とより制限的な慣行による農業における課題の増加である。
従来の手法は、フィールドでの限られたサンプリングと実験室での分析に基づいている。
マルチスペクトルUAV画像を用いたパセリ種子の成熟度推定手法の提案と,自動ラベリングのための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-09T09:06:51Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
本研究は, ブドウ畑の収量推定に深層学習と併用した近位画像の応用を実証する。
オブジェクト検出、CNN回帰、トランスフォーマーモデルという3つのモデルアーキテクチャがテストされた。
本研究は,ブドウの収量予測における近位画像と深層学習の適用性を示した。
論文 参考訳(メタデータ) (2022-08-04T01:34:46Z) - Towards Infield Navigation: leveraging simulated data for crop row
detection [6.088167023055281]
シミュレーションによって生成されたデータとともに、小さな実世界のデータセットの利用を提案し、大規模な実世界のデータセットで訓練されたモデルと同様の作物列検出性能を得る。
提案手法は,実世界データを用いて学習した深層学習に基づく作物列検出モデルの性能を60%低減した実世界データを用いて達成することができる。
論文 参考訳(メタデータ) (2022-04-04T19:28:30Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - TFill: Image Completion via a Transformer-Based Architecture [69.62228639870114]
画像補完を無方向性シーケンス対シーケンス予測タスクとして扱うことを提案する。
トークン表現には,小かつ重複しないRFを持つ制限型CNNを用いる。
第2フェーズでは、可視領域と発生領域の外観整合性を向上させるために、新しい注意認識層(aal)を導入する。
論文 参考訳(メタデータ) (2021-04-02T01:42:01Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
本稿では,セグメント化された平面マスクを画像に検出されたエッジと整列するための後処理アルゴリズムを提案する。
これにより、立方体形状の物体に制限を加えながら、最先端のアプローチの精度を高めることができます。
論文 参考訳(メタデータ) (2020-03-28T18:51:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。