論文の概要: Online Learning of Network Bottlenecks via Minimax Paths
- arxiv url: http://arxiv.org/abs/2109.08467v1
- Date: Fri, 17 Sep 2021 11:11:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-20 14:48:16.858321
- Title: Online Learning of Network Bottlenecks via Minimax Paths
- Title(参考訳): ミニマックスパスによるネットワーク基盤のオンライン学習
- Authors: Niklas {\AA}kerblom, Fazeleh Sadat Hoseini, Morteza Haghir Chehreghani
- Abstract要約: ミニマックス経路の抽出によるネットワークのボトルネック同定について検討する。
次に、元の目的を近似した代替問題定式化を考案する。
実世界の有向・無向ネットワーク上での近似定式化によりトンプソンサンプリングの性能を実験的に評価した。
- 参考スコア(独自算出の注目度): 6.316693022958221
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study bottleneck identification in networks via extracting
minimax paths. Many real-world networks have stochastic weights for which full
knowledge is not available in advance. Therefore, we model this task as a
combinatorial semi-bandit problem to which we apply a combinatorial version of
Thompson Sampling and establish an upper bound on the corresponding Bayesian
regret. Due to the computational intractability of the problem, we then devise
an alternative problem formulation which approximates the original objective.
Finally, we experimentally evaluate the performance of Thompson Sampling with
the approximate formulation on real-world directed and undirected networks.
- Abstract(参考訳): 本稿では,ミニマックス経路抽出によるネットワークのボトルネック同定について検討する。
多くの現実世界のネットワークは、十分な知識が事前に得られない確率的な重みを持っている。
したがって、このタスクを、トンプソンサンプリングの組合せ版を適用し、対応するベイズ的後悔の上限を確立する組合せ半帯域問題としてモデル化する。
問題の計算的難易度により、元の目的を近似した別の問題定式化を考案する。
最後に,実世界指向型および非指向型ネットワーク上での近似定式化により,トンプソンサンプリングの性能を実験的に評価した。
関連論文リスト
- Sparsest Models Elude Pruning: An Exposé of Pruning's Current Capabilities [4.842973374883628]
プルーニングは大規模モデルを圧縮するための有望なアプローチとして現れてきたが、モデルの範囲を回復する効果はまだ検討されていない。
我々は485,838の実験を行い、キュビストスパイラルと名付けられた合成データセットに最先端のプルーニングアルゴリズムを適用した。
そこで本研究では,新たな探索アルゴリズムによって同定した,理想的なスパースネットワークと比較して,性能の差が顕著であった。
論文 参考訳(メタデータ) (2024-07-04T17:33:15Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - A Bayesian approach to multi-task learning with network lasso [0.0]
ネットワークラッソによるマルチタスク学習問題を解決するためのベイズ的手法を提案する。
提案手法の有効性をシミュレーションと実データ解析で示す。
論文 参考訳(メタデータ) (2021-10-18T06:25:38Z) - Mixed-Privacy Forgetting in Deep Networks [114.3840147070712]
大規模画像分類タスクにおいてトレーニングされたネットワークの重みからトレーニングサンプルのサブセットの影響を除去できることを示す。
そこで本研究では,混合プライバシー設定における「忘れ」という新しい概念を導入する。
提案手法は,モデル精度のトレードオフを伴わずに忘れることができることを示す。
論文 参考訳(メタデータ) (2020-12-24T19:34:56Z) - Neural Thompson Sampling [94.82847209157494]
本稿では,ニューラルトンプソンサンプリング(Neural Thompson Smpling)と呼ばれる新しいアルゴリズムを提案する。
我々のアルゴリズムの中核は報酬の新たな後部分布であり、その平均はニューラルネットワーク近似器であり、その分散は対応するニューラルネットワークのニューラル・タンジェントな特徴に基づいて構築されている。
論文 参考訳(メタデータ) (2020-10-02T07:44:09Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
スパースサンプリングされた場所のみの機能を計算することを提案する。
次に、効率的な手順で特徴写像を密に再構築する。
提案したネットワークは、様々なコンピュータビジョンタスクの精度を維持しながら、かなりの計算を省くために実験的に示されている。
論文 参考訳(メタデータ) (2020-03-19T15:36:31Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z) - Ensemble Sampling [18.85309520133554]
本稿では,ニューラルネットワークのような複雑なモデルに直面した場合でも,トラクタビリティを維持しつつ,トンプソンサンプリングを近似するアンサンブルサンプリングを開発する。
我々は、このアプローチを支持する理論的基盤を確立し、さらなる洞察を提供する計算結果を示す。
論文 参考訳(メタデータ) (2017-05-20T19:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。