論文の概要: Enforcing fairness in private federated learning via the modified method
of differential multipliers
- arxiv url: http://arxiv.org/abs/2109.08604v1
- Date: Fri, 17 Sep 2021 15:28:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-20 14:47:52.404057
- Title: Enforcing fairness in private federated learning via the modified method
of differential multipliers
- Title(参考訳): 微分乗算器の修正法による私的フェデレーション学習における公平性強化
- Authors: Borja Rodr\'iguez-G\'alvez and Filip Granqvist and Rogier van Dalen
and Matt Seigel
- Abstract要約: 差分プライバシーによるフェデレーション学習、あるいはプライベートフェデレーション学習は、ユーザのプライバシを尊重しながら機械学習モデルをトレーニングする戦略を提供する。
本稿では,ユーザのデータがデバイスを離れないプライベートフェデレーション学習において,グループフェアネスを強制するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.3381749415517021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning with differential privacy, or private federated learning,
provides a strategy to train machine learning models while respecting users'
privacy. However, differential privacy can disproportionately degrade the
performance of the models on under-represented groups, as these parts of the
distribution are difficult to learn in the presence of noise. Existing
approaches for enforcing fairness in machine learning models have considered
the centralized setting, in which the algorithm has access to the users' data.
This paper introduces an algorithm to enforce group fairness in private
federated learning, where users' data does not leave their devices. First, the
paper extends the modified method of differential multipliers to empirical risk
minimization with fairness constraints, thus providing an algorithm to enforce
fairness in the central setting. Then, this algorithm is extended to the
private federated learning setting. The proposed algorithm, FPFL, is tested on
a federated version of the Adult dataset and an "unfair" version of the FEMNIST
dataset. The experiments on these datasets show how private federated learning
accentuates unfairness in the trained models, and how FPFL is able to mitigate
such unfairness.
- Abstract(参考訳): 差分プライバシーによるフェデレーション学習、あるいはプライベートフェデレーション学習は、ユーザのプライバシを尊重しながら機械学習モデルをトレーニングする戦略を提供する。
しかしながら、差分プライバシーは、ノイズの存在下での学習が困難であるため、非表現群におけるモデルの性能を不均等に低下させる可能性がある。
機械学習モデルの公平性を強制する既存のアプローチでは、アルゴリズムがユーザのデータにアクセスできる集中型設定が検討されている。
本稿では,ユーザのデータがデバイスを離れないプライベートフェデレーション学習において,グループフェアネスを強制するアルゴリズムを提案する。
まず, 偏乗法の修正法を, 公平性制約を伴う経験的リスク最小化に拡張し, 中央設定で公平性を強制するアルゴリズムを提供する。
そして、このアルゴリズムをプライベートなフェデレーション学習設定に拡張する。
提案されたアルゴリズムであるfpflは、成人データセットのフェデレーションバージョンとフェムニズムデータセットの"unfair"バージョンでテストされている。
これらのデータセットに対する実験は、プライベートフェデレーション学習がトレーニングされたモデルにおける不公平性を如何にアクセントし、FPFLがそのような不公平性を緩和できるかを示している。
関連論文リスト
- A Stochastic Optimization Framework for Private and Fair Learning From Decentralized Data [14.748203847227542]
プライベート・フェア・フェデレーション・ラーニング(FL)のための新しいアルゴリズムを開発した。
我々のアルゴリズムは、サイロ間レコードレベル差分プライバシー(ISRL-DP)を満たす。
実験では、さまざまなプライバシレベルにわたるアルゴリズムのトレードオフとして、最先端の公正性・正確性フレームワークが実証されている。
論文 参考訳(メタデータ) (2024-11-12T15:51:35Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
ディープジェネレータ技術は、区別がつかない高品質のフェイクビデオを制作し、深刻な社会的脅威をもたらす可能性がある。
従来の偽造検出手法は、データを直接集中的に訓練する。
本稿では,個人化表現を用いた新しいフェデレーション顔偽造検出学習を提案する。
論文 参考訳(メタデータ) (2024-06-17T02:20:30Z) - Can Public Large Language Models Help Private Cross-device Federated Learning? [58.05449579773249]
言語モデルのプライベート・フェデレーション・ラーニング(FL)について検討する。
公開データは、大小両方の言語モデルのプライバシーとユーティリティのトレードオフを改善するために使われてきた。
提案手法は,プライベートなデータ分布に近い公開データをサンプリングするための理論的基盤を持つ新しい分布マッチングアルゴリズムである。
論文 参考訳(メタデータ) (2023-05-20T07:55:58Z) - FairVFL: A Fair Vertical Federated Learning Framework with Contrastive
Adversarial Learning [102.92349569788028]
本稿では,VFLモデルの公平性を改善するために,FairVFL( Fair vertical federated learning framework)を提案する。
FairVFLの中核となる考え方は、分散化された機能フィールドに基づいたサンプルの統一的で公正な表現を、プライバシ保護の方法で学習することである。
ユーザのプライバシ保護のために,サーバ内の統一表現からプライベート情報を除去する対向学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-07T11:43:32Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
本研究では,異なるグループに属する個人を1つのグループにマッピングできる公正表現学習アルゴリズムを開発した。
提案手法は,他の公正表現学習アルゴリズムと競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T10:49:49Z) - Improving Fairness via Federated Learning [14.231231094281362]
フェアネスを向上させるために,フェデレーション学習の価値を解析する理論的枠組みを提案する。
次に,FedAvgに基づくフェアラーニングアルゴリズムの性能トレードオフが,集中型データに基づいて訓練されたフェアクラシファイアよりも厳密に悪いことを示す。
これを解決するために,修正されたFedAvgプロトコルを用いて分散データに対するプライベートフェアラーニングアルゴリズムであるFedFBを提案する。
論文 参考訳(メタデータ) (2021-10-29T05:25:44Z) - FairFed: Enabling Group Fairness in Federated Learning [22.913999279079878]
フェデレーテッド・ラーニングは、複数のパーティで機械学習モデルを学習するための有望なソリューションと見なされている。
フェアネスを意識したアグリゲーション手法によりグループフェアネスを高める新しいアルゴリズムであるFairFedを提案する。
提案手法は,高度の不均一な属性分布の下で,最先端の公正な学習フレームワークよりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-02T17:55:20Z) - On the Privacy Risks of Algorithmic Fairness [9.429448411561541]
我々は、グループフェアネスのプライバシーリスクを、メンバーシップ推論攻撃のレンズを通して調査する。
公平さはプライバシーの犠牲であり、このコストは平等に分配されない。
論文 参考訳(メタデータ) (2020-11-07T09:15:31Z) - Fairness-aware Agnostic Federated Learning [47.26747955026486]
我々は、未知のテスト分布の課題に対処するために、公正に意識しない連邦学習フレームワーク(AgnosticFair)を開発した。
我々はカーネルリライジング関数を用いて、損失関数と公正制約の両方において各トレーニングサンプルにリライジング値を割り当てる。
構築されたモデルは、ローカルデータ配信の公平性を保証するため、ローカルサイトに直接適用することができる。
論文 参考訳(メタデータ) (2020-10-10T17:58:20Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。