Analyzing the Habitable Zones of Circumbinary Planets Using Machine
Learning
- URL: http://arxiv.org/abs/2109.08735v1
- Date: Fri, 17 Sep 2021 19:36:12 GMT
- Title: Analyzing the Habitable Zones of Circumbinary Planets Using Machine
Learning
- Authors: Zhihui Kong, Jonathan H. Jiang, Remo Burn, Kristen A. Fahy, Zonghong
Zhu
- Abstract summary: We study Habitable Zones of circumbinary planets based on planetary trajectory and dynamically informed habitable zones.
Our results indicate that the mass ratio and orbital eccentricity of binary stars are important factors affecting the orbital stability and habitability of planetary systems.
We train a machine learning model to quickly and efficiently classify these planetary systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Exoplanet detection in the past decade by efforts including NASA's Kepler and
TESS missions has discovered many worlds that differ substantially from planets
in our own Solar System, including more than 150 exoplanets orbiting binary or
multi-star systems. This not only broadens our understanding of the diversity
of exoplanets, but also promotes our study of exoplanets in the complex binary
systems and provides motivation to explore their habitability. In this study,
we investigate the Habitable Zones of circumbinary planets based on planetary
trajectory and dynamically informed habitable zones. Our results indicate that
the mass ratio and orbital eccentricity of binary stars are important factors
affecting the orbital stability and habitability of planetary systems.
Moreover, planetary trajectory and dynamically informed habitable zones divide
planetary habitability into three categories: habitable, part-habitable and
uninhabitable. Therefore, we train a machine learning model to quickly and
efficiently classify these planetary systems.
Related papers
- NEOviz: Uncertainty-Driven Visual Analysis of Asteroid Trajectories [41.49140717172804]
We introduce NEOviz, an interactive visualization system designed to assist planetary defense experts in the visual analysis of near-Earth objects.
In particular, we present a novel approach for visualizing the 3D uncertainty region through which an asteroid travels.
For potential impactors, we combine the 3D visualization with an uncertainty-aware impact map to illustrate the potential risks to human populations.
arXiv Detail & Related papers (2024-11-05T05:04:12Z) - Exoplanets Prediction in Multi-Planetary Systems and Determining the
Correlation Between the Parameters of Planets and Host Stars Using Artificial
Intelligence [0.0]
We search for additional exoplanets in 229 multi-planetary systems that house at least three or more confirmed planets.
We employ efficient machine learning approaches to analyze a dataset comprising 762 confirmed exoplanets and eight Solar System planets.
For giant planets, we observe a strong correlation between planetary radius and the mass of their host stars, which might provide intriguing insights into the relationship between giant planet formation and stellar characteristics.
arXiv Detail & Related papers (2024-02-27T21:28:08Z) - DBNets: A publicly available deep learning tool to measure the masses of
young planets in dusty protoplanetary discs [49.1574468325115]
We develop DBNets, a tool to quickly infer the mass of allegedly embedded planets from protoplanetary discs.
We extensively tested our tool on out-of-distribution data.
DBNets can identify inputs strongly outside its training scope returning an uncertainty above a specific threshold.
It can be reliably applied only on discs observed with inclinations below approximately 60deg, in the optically thin regime.
arXiv Detail & Related papers (2024-02-19T19:00:09Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
We present a fully learning-based approach for real-world humanoid locomotion.
Our controller can walk over various outdoor terrains, is robust to external disturbances, and can adapt in context.
arXiv Detail & Related papers (2023-03-06T18:59:09Z) - Enabling Astronaut Self-Scheduling using a Robust Advanced Modelling and
Scheduling system: an assessment during a Mars analogue mission [44.621922701019336]
We study the usage of a computer decision-support tool by a crew of analog astronauts.
The proposed tool, called Romie, belongs to the new category of Robust Advanced Modelling and Scheduling (RAMS) systems.
arXiv Detail & Related papers (2023-01-14T21:10:05Z) - Identifying Exoplanets with Machine Learning Methods: A Preliminary
Study [1.553390835237685]
We propose the idea of using machine learning methods to identify exoplanets.
We used the Kepler dataset collected by NASA from the Kepler Space Observatory to conduct supervised learning.
We also conducted unsupervised learning, which divides confirmed exoplanets into different clusters, using k-means clustering.
arXiv Detail & Related papers (2022-04-01T23:48:26Z) - Automation Of Transiting Exoplanet Detection, Identification and
Habitability Assessment Using Machine Learning Approaches [0.0]
We analyze the light intensity curves from stars captured by the Kepler telescope to detect the potential curves that exhibit the characteristics of an existence of a possible planetary system.
We address the automation of exoplanet identification and habitability determination by leveraging several state-of-art machine learning and ensemble approaches.
arXiv Detail & Related papers (2021-12-06T19:00:12Z) - Towards Robust Monocular Visual Odometry for Flying Robots on Planetary
Missions [49.79068659889639]
Ingenuity, that just landed on Mars, will mark the beginning of a new era of exploration unhindered by traversability.
We present an advanced robust monocular odometry algorithm that uses efficient optical flow tracking.
We also present a novel approach to estimate the current risk of scale drift based on a principal component analysis of the relative translation information matrix.
arXiv Detail & Related papers (2021-09-12T12:52:20Z) - On planetary systems as ordered sequences [7.216830424040808]
We consider what information belongs to the configuration, or ordering, of 4286 Kepler planets in their 3277 planetary systems.
We train a neural network model to predict the radius and period of a planet based on the properties of its host star.
We adapt a model used for unsupervised part-of-speech tagging in computational linguistics to investigate whether planets or planetary systems fall into natural categories with physically interpretable "grammatical rules"
arXiv Detail & Related papers (2021-05-20T18:00:29Z) - NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM
CoSTAR at the DARPA Subterranean Challenge [105.27989489105865]
This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR.
The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy).
arXiv Detail & Related papers (2021-03-21T19:42:26Z) - Analyzing the Stability of Non-coplanar Circumbinary Planets using
Machine Learning [0.0]
We analyze orbital stability of exoplanets in non-coplanar circumbinary systems using a numerical simulation method.
We train a machine learning model that can quickly determine the stability of the circumbinary planetary systems.
Our results indicate that larger inclinations of the planet tend to increase the stability of its orbit, but change in the planet's mass range between Earth and Jupiter has little effect on the stability of the system.
arXiv Detail & Related papers (2021-01-07T00:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.