Real-World Humanoid Locomotion with Reinforcement Learning
- URL: http://arxiv.org/abs/2303.03381v2
- Date: Thu, 14 Dec 2023 16:11:29 GMT
- Title: Real-World Humanoid Locomotion with Reinforcement Learning
- Authors: Ilija Radosavovic, Tete Xiao, Bike Zhang, Trevor Darrell, Jitendra
Malik, Koushil Sreenath
- Abstract summary: We present a fully learning-based approach for real-world humanoid locomotion.
Our controller can walk over various outdoor terrains, is robust to external disturbances, and can adapt in context.
- Score: 92.85934954371099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humanoid robots that can autonomously operate in diverse environments have
the potential to help address labour shortages in factories, assist elderly at
homes, and colonize new planets. While classical controllers for humanoid
robots have shown impressive results in a number of settings, they are
challenging to generalize and adapt to new environments. Here, we present a
fully learning-based approach for real-world humanoid locomotion. Our
controller is a causal transformer that takes the history of proprioceptive
observations and actions as input and predicts the next action. We hypothesize
that the observation-action history contains useful information about the world
that a powerful transformer model can use to adapt its behavior in-context,
without updating its weights. We train our model with large-scale model-free
reinforcement learning on an ensemble of randomized environments in simulation
and deploy it to the real world zero-shot. Our controller can walk over various
outdoor terrains, is robust to external disturbances, and can adapt in context.
Related papers
- Learning Humanoid Locomotion over Challenging Terrain [84.35038297708485]
We present a learning-based approach for blind humanoid locomotion capable of traversing challenging natural and man-made terrains.
Our model is first pre-trained on a dataset of flat-ground trajectories with sequence modeling, and then fine-tuned on uneven terrain using reinforcement learning.
We evaluate our model on a real humanoid robot across a variety of terrains, including rough, deformable, and sloped surfaces.
arXiv Detail & Related papers (2024-10-04T17:57:09Z) - Expressive Whole-Body Control for Humanoid Robots [20.132927075816742]
We learn a whole-body control policy on a human-sized robot to mimic human motions as realistic as possible.
With training in simulation and Sim2Real transfer, our policy can control a humanoid robot to walk in different styles, shake hands with humans, and even dance with a human in the real world.
arXiv Detail & Related papers (2024-02-26T18:09:24Z) - Structured World Models from Human Videos [45.08503470821952]
We tackle the problem of learning complex, general behaviors directly in the real world.
We propose an approach for robots to efficiently learn manipulation skills using only a handful of real-world interaction trajectories.
arXiv Detail & Related papers (2023-08-21T17:59:32Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
We train a visual affordance model that estimates where and how in the scene a human is likely to interact.
The structure of these behavioral affordances directly enables the robot to perform many complex tasks.
We show the efficacy of our approach, which we call VRB, across 4 real world environments, over 10 different tasks, and 2 robotic platforms operating in the wild.
arXiv Detail & Related papers (2023-04-17T17:59:34Z) - Towards Modeling and Influencing the Dynamics of Human Learning [26.961274302321343]
We take a step towards enabling robots to understand the influence they have, leverage it to better assist people, and help human models more quickly align with reality.
Our key idea is to model the human's learning as a nonlinear dynamical system which evolves the human's internal model given new observations.
We then formalize how robots can influence human learning by embedding the human's learning dynamics model into the robot planning problem.
arXiv Detail & Related papers (2023-01-02T23:59:45Z) - DexTransfer: Real World Multi-fingered Dexterous Grasping with Minimal
Human Demonstrations [51.87067543670535]
We propose a robot-learning system that can take a small number of human demonstrations and learn to grasp unseen object poses.
We train a dexterous grasping policy that takes the point clouds of the object as input and predicts continuous actions to grasp objects from different initial robot states.
The policy learned from our dataset can generalize well on unseen object poses in both simulation and the real world.
arXiv Detail & Related papers (2022-09-28T17:51:49Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
Legged locomotion can dramatically expand the operational domains of robotics.
Conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes.
Here we present a radically robust controller for legged locomotion in challenging natural environments.
arXiv Detail & Related papers (2020-10-21T19:11:20Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
We propose an approach that combines learning-based perception with model-based optimal control to navigate among humans.
Our approach is enabled by our novel data-generation tool, HumANav.
We demonstrate that the learned navigation policies can anticipate and react to humans without explicitly predicting future human motion.
arXiv Detail & Related papers (2020-03-20T16:13:47Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.