Probabilistic Inference of Simulation Parameters via Parallel
Differentiable Simulation
- URL: http://arxiv.org/abs/2109.08815v1
- Date: Sat, 18 Sep 2021 03:05:44 GMT
- Title: Probabilistic Inference of Simulation Parameters via Parallel
Differentiable Simulation
- Authors: Eric Heiden, Christopher E. Denniston, David Millard, Fabio Ramos,
Gaurav S. Sukhatme
- Abstract summary: To accurately reproduce measurements from the real world, simulators need to have an adequate model of the physical system.
We address the latter problem of estimating parameters through a Bayesian inference approach.
We leverage GPU code generation and differentiable simulation to evaluate the likelihood and its gradient for many particles in parallel.
- Score: 34.30381620584878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To accurately reproduce measurements from the real world, simulators need to
have an adequate model of the physical system and require the parameters of the
model be identified.
We address the latter problem of estimating parameters through a Bayesian
inference approach that approximates a posterior distribution over simulation
parameters given real sensor measurements. By extending the commonly used
Gaussian likelihood model for trajectories via the multiple-shooting
formulation, our chosen particle-based inference algorithm Stein Variational
Gradient Descent is able to identify highly nonlinear, underactuated systems.
We leverage GPU code generation and differentiable simulation to evaluate the
likelihood and its gradient for many particles in parallel.
Our algorithm infers non-parametric distributions over simulation parameters
more accurately than comparable baselines and handles constraints over
parameters efficiently through gradient-based optimization. We evaluate
estimation performance on several physical experiments. On an underactuated
mechanism where a 7-DOF robot arm excites an object with an unknown mass
configuration, we demonstrate how our inference technique can identify
symmetries between the parameters and provide highly accurate predictions.
Project website: https://uscresl.github.io/prob-diff-sim
Related papers
- Embed and Emulate: Contrastive representations for simulation-based inference [11.543221890134399]
This paper introduces Embed and Emulate (E&E), a new simulation-based inference ( SBI) method based on contrastive learning.
E&E learns a low-dimensional latent embedding of the data and a corresponding fast emulator in the latent space.
We demonstrate superior performance over existing methods in a realistic, non-identifiable parameter estimation task.
arXiv Detail & Related papers (2024-09-27T02:37:01Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
We introduce lower bounds to the linearized Laplace approximation of the marginal likelihood.
These bounds are amenable togradient-based optimization and allow to trade off estimation accuracy against computational complexity.
arXiv Detail & Related papers (2023-06-06T19:02:57Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Embed and Emulate: Learning to estimate parameters of dynamical systems
with uncertainty quantification [11.353411236854582]
This paper explores learning emulators for parameter estimation with uncertainty estimation of high-dimensional dynamical systems.
Our task is to accurately estimate a range of likely values of the underlying parameters.
On a coupled 396-dimensional multiscale Lorenz 96 system, our method significantly outperforms a typical parameter estimation method.
arXiv Detail & Related papers (2022-11-03T01:59:20Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Arbitrary Marginal Neural Ratio Estimation for Simulation-based
Inference [7.888755225607877]
We present a novel method that enables amortized inference over arbitrary subsets of the parameters, without resorting to numerical integration.
We demonstrate the applicability of the method on parameter inference of binary black hole systems from gravitational waves observations.
arXiv Detail & Related papers (2021-10-01T14:35:46Z) - Learning to discover: expressive Gaussian mixture models for
multi-dimensional simulation and parameter inference in the physical sciences [0.0]
We show that density models describing multiple observables may be created using an auto-regressive Gaussian mixture model.
The model is designed to capture how observable spectra are deformed by hypothesis variations.
It may be used as a statistical model for scientific discovery in interpreting experimental observations.
arXiv Detail & Related papers (2021-08-25T21:27:29Z) - Auto-Tuned Sim-to-Real Transfer [143.44593793640814]
Policies trained in simulation often fail when transferred to the real world.
Current approaches to tackle this problem, such as domain randomization, require prior knowledge and engineering.
We propose a method for automatically tuning simulator system parameters to match the real world.
arXiv Detail & Related papers (2021-04-15T17:59:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.