Discriminative versus Generative Approaches to Simulation-based Inference
- URL: http://arxiv.org/abs/2503.07962v1
- Date: Tue, 11 Mar 2025 01:38:54 GMT
- Title: Discriminative versus Generative Approaches to Simulation-based Inference
- Authors: Benjamin Sluijter, Sascha Diefenbacher, Wahid Bhimji, Benjamin Nachman,
- Abstract summary: Deep learning has enabled unbinned and high-dimensional parameter estimation.<n>We compare two approaches for neural simulation-based inference (N SBI)<n>We find that both the direct likelihood and likelihood ratio estimation are able to effectively extract parameters with reasonable uncertainties.
- Score: 0.19999259391104385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most of the fundamental, emergent, and phenomenological parameters of particle and nuclear physics are determined through parametric template fits. Simulations are used to populate histograms which are then matched to data. This approach is inherently lossy, since histograms are binned and low-dimensional. Deep learning has enabled unbinned and high-dimensional parameter estimation through neural likelihiood(-ratio) estimation. We compare two approaches for neural simulation-based inference (NSBI): one based on discriminative learning (classification) and one based on generative modeling. These two approaches are directly evaluated on the same datasets, with a similar level of hyperparameter optimization in both cases. In addition to a Gaussian dataset, we study NSBI using a Higgs boson dataset from the FAIR Universe Challenge. We find that both the direct likelihood and likelihood ratio estimation are able to effectively extract parameters with reasonable uncertainties. For the numerical examples and within the set of hyperparameters studied, we found that the likelihood ratio method is more accurate and/or precise. Both methods have a significant spread from the network training and would require ensembling or other mitigation strategies in practice.
Related papers
- Neural Parameter Estimation with Incomplete Data [0.0]
It is not straightforward to use neural networks with data that for various reasons are incomplete.
A recently proposed approach to remedy this issue inputs an appropriately padded data vector and a vector that encodes the missingness pattern to a neural network.
Here, we propose an alternative approach that is based on the Monte Carlo expectation-maximization (EM) algorithm.
arXiv Detail & Related papers (2025-01-08T08:05:17Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - A Federated Learning-based Industrial Health Prognostics for
Heterogeneous Edge Devices using Matched Feature Extraction [16.337207503536384]
We propose a pioneering FL-based health prognostic model with a feature similarity-matched parameter aggregation algorithm.
We show that the proposed method yields accuracy improvements as high as 44.5% and 39.3% for state-of-health estimation and remaining useful life estimation.
arXiv Detail & Related papers (2023-05-13T07:20:31Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Probabilistic Inference of Simulation Parameters via Parallel
Differentiable Simulation [34.30381620584878]
To accurately reproduce measurements from the real world, simulators need to have an adequate model of the physical system.
We address the latter problem of estimating parameters through a Bayesian inference approach.
We leverage GPU code generation and differentiable simulation to evaluate the likelihood and its gradient for many particles in parallel.
arXiv Detail & Related papers (2021-09-18T03:05:44Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
We propose a flexible model for survival analysis using neural networks along with scalable optimization algorithms.
We demonstrate the effectiveness of the proposed method in comparison to existing state-of-the-art deep learning survival analysis models.
arXiv Detail & Related papers (2020-08-19T19:11:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.