論文の概要: Underwater Image Enhancement Using Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2109.08916v1
- Date: Sat, 18 Sep 2021 12:01:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-23 11:14:23.476331
- Title: Underwater Image Enhancement Using Convolutional Neural Network
- Title(参考訳): 畳み込みニューラルネットワークを用いた水中画像強調
- Authors: Anushka Yadav, Mayank Upadhyay, Ghanapriya Singh
- Abstract要約: ヒストグラム等化(Histogram equalization)は、コントラストを高めるために画像強度を調整する技術である。
画像の色は、水中画像のデータセットによってトレーニングされた畳み込みニューラルネットワークモデルを用いて保持される。
- 参考スコア(独自算出の注目度): 1.1602089225841632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work proposes a method for underwater image enhancement using the
principle of histogram equalization. Since underwater images have a global
strong dominant colour, their colourfulness and contrast are often degraded.
Before applying the histogram equalisation technique on the image, the image is
converted from coloured image to a gray scale image for further operations.
Histogram equalization is a technique for adjusting image intensities to
enhance contrast. The colours of the image are retained using a convolutional
neural network model which is trained by the datasets of underwater images to
give better results.
- Abstract(参考訳): 本研究では,ヒストグラム等化原理を用いた水中画像強調手法を提案する。
水中画像は地球規模で支配的な色であるため、その色彩やコントラストはしばしば劣化する。
画像にヒストグラム等化技術を適用する前に、カラー画像からグレースケール画像に変換してさらなる操作を行う。
ヒストグラム等化はコントラストを高めるために画像強度を調整する技法である。
画像の色は、水中画像のデータセットによって訓練された畳み込みニューラルネットワークモデルを使用して保持され、より良い結果が得られる。
関連論文リスト
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Underwater enhancement based on a self-learning strategy and attention
mechanism for high-intensity regions [0.0]
水中活動中に取得した画像は、濁度や光の減衰などの水の環境特性に悩まされる。
水中画像の強化に関する最近の研究と深層学習のアプローチに基づき、合成地下構造を生成する組合わせデータセットの欠如に対処する。
本稿では,ペアデータセットを必要としない深層学習に基づく水中画像強調のための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2022-08-04T19:55:40Z) - Neural Color Operators for Sequential Image Retouching [62.99812889713773]
本稿では,新たに導入したトレーニング可能なニューラルカラー演算子のシーケンスとして,リタッチ処理をモデル化して,新しい画像リタッチ手法を提案する。
ニューラルカラー演算子は、従来のカラー演算子の振舞いを模倣し、その強度をスカラーで制御しながらピクセルワイズな色変換を学習する。
定量的な測定と視覚的品質の両面で,SOTA法と比較して常に最良の結果が得られている。
論文 参考訳(メタデータ) (2022-07-17T05:33:19Z) - Immiscible Color Flows in Optimal Transport Networks for Image
Classification [68.8204255655161]
画像の色分布を利用するために最適な輸送原理を適用する物理に着想を得たシステムを提案する。
私たちのダイナミクスは、画像から構築されたネットワーク上を走行する色を不可視的に制御します。
本手法は,カラー情報が重要となるデータセットにおける画像分類タスクにおいて,競合するアルゴリズムよりも優れる。
論文 参考訳(メタデータ) (2022-05-04T12:41:36Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Wavelength-based Attributed Deep Neural Network for Underwater Image
Restoration [9.378355457555319]
本稿では,色チャネルの移動範囲に基づいて,適切な受容場サイズ(コンテキスト)を付与することで,大幅な性能向上が期待できることを示す。
第2の新規性として、学習したマルチコンテキスト特徴を適応的に洗練するための注意的スキップ機構を組み込んだ。
提案するフレームワークはDeep WaveNetと呼ばれ、従来のピクセル単位で機能ベースのコスト関数を使って最適化されている。
論文 参考訳(メタデータ) (2021-06-15T06:47:51Z) - Image Enhancement using Fuzzy Intensity Measure and Adaptive Clipping
Histogram Equalization [21.963436654053226]
ファジィ強度測定と適応的クリッピングヒストグラム等化(FIMHE)を提案する。
バークレーデータベースとCVF-UGR-Imageデータベースの実験では、FIMHEが最先端のヒストグラム等化ベースの方法よりも優れていることが示されています。
論文 参考訳(メタデータ) (2021-01-15T00:59:55Z) - Context-Aware Image Denoising with Auto-Threshold Canny Edge Detection
to Suppress Adversarial Perturbation [0.8021197489470756]
本論文では,新しいコンテキスト認識画像デノイジングアルゴリズムを提案する。
適応画像スムージング技術とカラーリダクション技術を組み合わせて、逆画像からの摂動を除去します。
提案手法は, 敵の攻撃による敵の摂動を低減し, 深部畳み込みニューラルネットワークモデルの堅牢性を向上することを示す。
論文 参考訳(メタデータ) (2021-01-14T19:15:28Z) - HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color
Histograms [52.77252727786091]
HistoGANは、GAN生成画像の色を制御するための色ヒストグラムに基づく方法である。
我々は、HistoGANを拡張して、実画像を再色する方法を示す。
論文 参考訳(メタデータ) (2020-11-23T21:14:19Z) - Underwater Image Color Correction by Complementary Adaptation [0.0]
本稿では,CIELAB色空間におけるTikhonov型最適化モデルに基づく水中色補正手法を提案する。
本手法は, 長期適応プロセスとして, 水中色キャストを効果的に除去し, バランスの取れた色分布を得る。
論文 参考訳(メタデータ) (2020-10-21T03:59:22Z) - Supervised and Unsupervised Learning of Parameterized Color Enhancement [112.88623543850224]
我々は、教師なし学習と教師なし学習の両方を用いて、画像翻訳タスクとしての色強調の問題に取り組む。
我々は,MIT-Adobe FiveKベンチマークにおいて,教師付き(ペアデータ)と教師なし(ペアデータ)の2つの画像強調手法と比較して,最先端の結果が得られた。
20世紀初頭の写真や暗黒ビデオフレームに応用することで,本手法の一般化能力を示す。
論文 参考訳(メタデータ) (2019-12-30T13:57:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。