Underwater Image Enhancement Using Convolutional Neural Network
- URL: http://arxiv.org/abs/2109.08916v1
- Date: Sat, 18 Sep 2021 12:01:14 GMT
- Title: Underwater Image Enhancement Using Convolutional Neural Network
- Authors: Anushka Yadav, Mayank Upadhyay, Ghanapriya Singh
- Abstract summary: Histogram equalization is a technique for adjusting image intensities to enhance contrast.
The colours of the image are retained using a convolutional neural network model which is trained by the datasets of underwater images.
- Score: 1.1602089225841632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work proposes a method for underwater image enhancement using the
principle of histogram equalization. Since underwater images have a global
strong dominant colour, their colourfulness and contrast are often degraded.
Before applying the histogram equalisation technique on the image, the image is
converted from coloured image to a gray scale image for further operations.
Histogram equalization is a technique for adjusting image intensities to
enhance contrast. The colours of the image are retained using a convolutional
neural network model which is trained by the datasets of underwater images to
give better results.
Related papers
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Underwater enhancement based on a self-learning strategy and attention
mechanism for high-intensity regions [0.0]
Images acquired during underwater activities suffer from environmental properties of the water, such as turbidity and light attenuation.
Recent works related to underwater image enhancement, and based on deep learning approaches, tackle the lack of paired datasets generating synthetic ground-truth.
We present a self-supervised learning methodology for underwater image enhancement based on deep learning that requires no paired datasets.
arXiv Detail & Related papers (2022-08-04T19:55:40Z) - Neural Color Operators for Sequential Image Retouching [62.99812889713773]
We propose a novel image retouching method by modeling the retouching process as performing a sequence of newly introduced trainable neural color operators.
The neural color operator mimics the behavior of traditional color operators and learns pixelwise color transformation while its strength is controlled by a scalar.
Our method consistently achieves the best results compared with SOTA methods in both quantitative measures and visual qualities.
arXiv Detail & Related papers (2022-07-17T05:33:19Z) - Immiscible Color Flows in Optimal Transport Networks for Image
Classification [68.8204255655161]
We propose a physics-inspired system that adapts Optimal Transport principles to leverage color distributions of images.
Our dynamics regulates immiscible of colors traveling on a network built from images.
Our method outperforms competitor algorithms on image classification tasks in datasets where color information matters.
arXiv Detail & Related papers (2022-05-04T12:41:36Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Wavelength-based Attributed Deep Neural Network for Underwater Image
Restoration [9.378355457555319]
This paper shows that attributing the right receptive field size (context) based on the traversing range of the color channel may lead to a substantial performance gain.
As a second novelty, we have incorporated an attentive skip mechanism to adaptively refine the learned multi-contextual features.
The proposed framework, called Deep WaveNet, is optimized using the traditional pixel-wise and feature-based cost functions.
arXiv Detail & Related papers (2021-06-15T06:47:51Z) - Image Enhancement using Fuzzy Intensity Measure and Adaptive Clipping
Histogram Equalization [21.963436654053226]
fuzzy intensity measure and adaptive clipping histogram equalization (FIMHE) proposed.
Experiments on Berkeley database and CVF-UGR-Image database show that FIMHE outperforms state-of-the-art histogram equalization based methods.
arXiv Detail & Related papers (2021-01-15T00:59:55Z) - Context-Aware Image Denoising with Auto-Threshold Canny Edge Detection
to Suppress Adversarial Perturbation [0.8021197489470756]
This paper presents a novel context-aware image denoising algorithm.
It combines an adaptive image smoothing technique and color reduction techniques to remove perturbation from adversarial images.
Our results show that the proposed approach reduces adversarial perturbation in adversarial attacks and increases the robustness of the deep convolutional neural network models.
arXiv Detail & Related papers (2021-01-14T19:15:28Z) - HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color
Histograms [52.77252727786091]
HistoGAN is a color histogram-based method for controlling GAN-generated images' colors.
We show how to expand HistoGAN to recolor real images.
arXiv Detail & Related papers (2020-11-23T21:14:19Z) - Underwater Image Color Correction by Complementary Adaptation [0.0]
We propose a novel approach for underwater image color correction based on a Tikhonov type optimization model in the CIELAB color space.
Understood as a long-term adaptive process, our method effectively removes the underwater color cast and yields a balanced color distribution.
arXiv Detail & Related papers (2020-10-21T03:59:22Z) - Supervised and Unsupervised Learning of Parameterized Color Enhancement [112.88623543850224]
We tackle the problem of color enhancement as an image translation task using both supervised and unsupervised learning.
We achieve state-of-the-art results compared to both supervised (paired data) and unsupervised (unpaired data) image enhancement methods on the MIT-Adobe FiveK benchmark.
We show the generalization capability of our method, by applying it on photos from the early 20th century and to dark video frames.
arXiv Detail & Related papers (2019-12-30T13:57:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.