論文の概要: Risk-averse autonomous systems: A brief history and recent developments
from the perspective of optimal control
- arxiv url: http://arxiv.org/abs/2109.08947v1
- Date: Sat, 18 Sep 2021 15:01:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-21 16:34:32.436406
- Title: Risk-averse autonomous systems: A brief history and recent developments
from the perspective of optimal control
- Title(参考訳): リスク・アバース自律システム: 最適制御の観点からの簡単な歴史と最近の展開
- Authors: Yuheng Wang and Margaret P. Chapman
- Abstract要約: 我々は、最先端のアプローチを分類し、提示し、意思決定理論、運用研究、強化学習、制御の分野から、そのようなアプローチとアイデアの関連について述べる。
レビューの最初の部分は、モデルに基づくリスク回避手法に焦点を当てている。
第2部では、適応能力を向上したポリシーを設計するために、モデルベースとモデルフリーのテクニックをブレンドする手法について論じる。
- 参考スコア(独自算出の注目度): 1.6752182911522522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We offer a historical overview of methodologies for quantifying the notion of
risk and optimizing risk-aware autonomous systems, with emphasis on risk-averse
settings in which safety may be critical. We categorize and present
state-of-the-art approaches, and we describe connections between such
approaches and ideas from the fields of decision theory, operations research,
reinforcement learning, and stochastic control. The first part of the review
focuses on model-based risk-averse methods. The second part discusses methods
that blend model-based and model-free techniques for the purpose of designing
policies with improved adaptive capabilities. We conclude by highlighting areas
for future research.
- Abstract(参考訳): 安全を重要視するリスク回避設定に重点を置いた,リスク概念の定量化とリスク対応自律システムの最適化のための方法論の歴史的概要を提供する。
我々は,最先端のアプローチの分類と現状について述べるとともに,意思決定理論,運用研究,強化学習,確率的制御といった分野のアプローチとアイデアの関連について述べる。
レビューの最初の部分は、モデルに基づくリスク回避手法に焦点を当てている。
第2部では,適応能力を向上させたポリシ設計を目的として,モデルベースとモデルフリーの手法をブレンドする手法について論じる。
我々は今後の研究の分野を強調して結論付ける。
関連論文リスト
- A Formal Framework for Assessing and Mitigating Emergent Security Risks in Generative AI Models: Bridging Theory and Dynamic Risk Mitigation [0.3413711585591077]
大規模言語モデル(LLM)や拡散モデルを含む生成AIシステムが急速に進歩するにつれ、その採用が増加し、新たな複雑なセキュリティリスクがもたらされた。
本稿では,これらの突発的なセキュリティリスクを分類・緩和するための新しい形式的枠組みを提案する。
我々は、潜時空間利用、マルチモーダル・クロスアタック・ベクター、フィードバックループによるモデル劣化など、未探索のリスクを特定した。
論文 参考訳(メタデータ) (2024-10-15T02:51:32Z) - Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian
Score Climbing [3.9410617513331863]
動的システムの最適制御は、シーケンシャルな意思決定において重要な課題である。
コントロール・アズ・推論のアプローチは大きな成功をおさめ、探索・探索ジレンマに対処するためのリスクに敏感なフレームワークを提供する。
本稿では, 条件付き粒子フィルタから抽出した試料下でのマルコフ強化スコアクライミングとして, リスク感応性制御のフレーミングによる新しい視点を提案する。
論文 参考訳(メタデータ) (2023-12-21T16:34:03Z) - Deep Generative Models for Decision-Making and Control [4.238809918521607]
この論文の2つの目的は、これらの欠点の理由を研究し、未解決問題に対する解決策を提案することである。
本稿では、ビームサーチを含む現代の生成モデリングツールボックスからの推論手法を、強化学習問題のための実行可能な計画戦略として再解釈する方法について述べる。
論文 参考訳(メタデータ) (2023-06-15T01:54:30Z) - Off-policy evaluation for learning-to-rank via interpolating the
item-position model and the position-based model [83.83064559894989]
産業レコメンデーションシステムにとって重要なニーズは、製品にデプロイする前に、レコメンデーションポリシーをオフラインで評価する機能である。
我々は、最も人気のある2つの非政治推定器の問題を緩和する新しい推定器を開発する。
特に、InterPOLと呼ばれる新しい推定器は、潜在的に不特定位置ベースモデルのバイアスに対処する。
論文 参考訳(メタデータ) (2022-10-15T17:22:30Z) - Deep Learning for Systemic Risk Measures [3.274367403737527]
本研究の目的は,システム的リスク対策のための新しい方法論の枠組みを検討することである。
この新たな枠組みの下で、システム的リスク対策は、集約されたシステムを保護する最小限の現金として解釈できる。
ディープラーニングは、金融モデリングやリスク管理においてますます注目を集めている。
論文 参考訳(メタデータ) (2022-07-02T05:01:19Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - Sample-Based Bounds for Coherent Risk Measures: Applications to Policy
Synthesis and Verification [32.9142708692264]
本稿では,リスク認識の検証と政策合成に関するいくつかの問題に対処することを目的とする。
まず,確率変数分布のサブセットを評価するサンプルベース手法を提案する。
第二に、決定空間の大部分を上回る問題に対する解を決定するロボットベースの手法を開発する。
論文 参考訳(メタデータ) (2022-04-21T01:06:10Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
我々は、前向きモデルや後向きモデルによる後向き操作による予測として使われる計画の利益と特異性を理解するために活動する。
本稿では,予測を(再)評価すべき状態の選択に主眼を置いて,計画におけるモデルの利用について検討する。
論文 参考訳(メタデータ) (2020-10-26T16:00:47Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Reinforcement Learning as Iterative and Amortised Inference [62.997667081978825]
我々は、この制御を推論フレームワークとして使用し、償却および反復推論に基づく新しい分類スキームを概説する。
この観点から、比較的探索されていないアルゴリズム設計空間の一部を特定できることを示す。
論文 参考訳(メタデータ) (2020-06-13T16:10:03Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。