論文の概要: Development of patients triage algorithm from nationwide COVID-19
registry data based on machine learning
- arxiv url: http://arxiv.org/abs/2109.09001v1
- Date: Sat, 18 Sep 2021 19:56:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-23 09:12:33.008701
- Title: Development of patients triage algorithm from nationwide COVID-19
registry data based on machine learning
- Title(参考訳): 機械学習に基づく全国新型コロナウイルス登録データからの患者トリアージアルゴリズムの開発
- Authors: Hyung Ju Hwang, Seyoung Jung, Min Sue Park, Hyeontae Jo
- Abstract要約: 本稿では,機械学習技術を用いた重症度評価モデルの開発過程について述べる。
モデルは基本的な患者の基本的個人データのみを必要とするため、患者は自身の重症度を判断できる。
本研究の目的は、患者が自身の重症度をチェックできる医療システムを構築し、同様の重症度を持つ他の患者の過去の治療内容に基づいて、適切な診療所への訪問を通知することである。
- 参考スコア(独自算出の注目度): 1.0323063834827415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt severity assessment model of confirmed patients who were infected with
infectious diseases could enable efficient diagnosis and alleviate the burden
on the medical system. This paper provides the development processes of the
severity assessment model using machine learning techniques and its application
on SARS-CoV-2 patients. Here, we highlight that our model only requires basic
patients' basic personal data, allowing for them to judge their own severity.
We selected the boosting-based decision tree model as a classifier and
interpreted mortality as a probability score after modeling. Specifically,
hyperparameters that determine the structure of the tree model were tuned using
the Bayesian optimization technique without any knowledge of medical
information. As a result, we measured model performance and identified the
variables affecting the severity through the model. Finally, we aim to
establish a medical system that allows patients to check their own severity and
informs them to visit the appropriate clinic center based on the past treatment
details of other patients with similar severity.
- Abstract(参考訳): 感染性疾患に罹患した患者に対するプロンプト重症度評価モデルは、効率的な診断を可能にし、医療システムの負担を軽減することができる。
本稿では,機械学習を用いた重症度評価モデルの開発とSARS-CoV-2患者への応用について述べる。
ここでは,本モデルが患者の基本的個人データのみを必要とすることを強調し,重症度を判断できるようにする。
分類器としてブースティングに基づく決定木モデルを選択し,モデル化後の確率スコアとして死亡率を解釈した。
具体的には,木モデルの構造を決定するハイパーパラメータを,医療情報の知識のないベイズ最適化手法を用いて調整した。
その結果,モデルの性能を測定し,モデルの重大度に影響を与える変数を同定した。
最後に,患者が自身の重症度を診断し,他の重症度患者の過去の治療内容に基づいて適切な診療所を訪れるよう通知する医療システムを確立することを目的とする。
関連論文リスト
- TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Modelling Patient Trajectories Using Multimodal Information [0.0]
本稿では,異なる種類の情報を組み合わせて臨床データの時間的側面を考慮した患者軌跡のモデル化手法を提案する。
本手法は, 予期せぬ患者寛解と疾患進行の2つの異なる臨床結果に基づいて検討した。
論文 参考訳(メタデータ) (2022-09-09T10:20:54Z) - Towards Trustworthy Cross-patient Model Development [3.109478324371548]
本研究は,全ての患者と1人の患者を対象に訓練を行った際のモデル性能と説明可能性の差異について検討した。
以上の結果から,患者の人口動態は,パフォーマンスや説明可能性,信頼性に大きな影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2021-12-20T10:51:04Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
EBMとAIベースの臨床モデルとのギャップを埋める技術を導入する。
集中治療(ICU)患者情報に基づいて患者固有の文献を自動的に検索するシステムを提案する。
我々のモデルは,最近の強靭なベースラインと比較して,3つの課題に対する予測精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-11-16T11:19:02Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Medical Profile Model: Scientific and Practical Applications in
Healthcare [1.718235998156457]
本研究は, 患者の病歴を, 病の時間的シーケンスとして提示し, その埋め込みを教師なしで学習する。
埋め込みスペースには、一般化された患者プロファイルの作成を可能にする人口統計パラメータが含まれている。
このような医療プロファイルモデルのトレーニングは、100万人以上の患者のデータセット上で実施されている。
論文 参考訳(メタデータ) (2021-06-21T13:30:43Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Building Deep Learning Models to Predict Mortality in ICU Patients [0.0]
そこで本研究では,SAPS IIスコアと同じ特徴を用いた深層学習モデルを提案する。
よく知られた臨床データセットである医療情報マート(Medical Information Mart for Intensive Care III)に基づいていくつかの実験が行われている。
論文 参考訳(メタデータ) (2020-12-11T16:27:04Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。