Regularize! Don't Mix: Multi-Agent Reinforcement Learning without
Explicit Centralized Structures
- URL: http://arxiv.org/abs/2109.09038v1
- Date: Sun, 19 Sep 2021 00:58:38 GMT
- Title: Regularize! Don't Mix: Multi-Agent Reinforcement Learning without
Explicit Centralized Structures
- Authors: Chapman Siu, Jason Traish, Richard Yi Da Xu
- Abstract summary: We propose using regularization for Multi-Agent Reinforcement Learning rather than learning explicit cooperative structures called em Multi-Agent Regularized Q-learning (MARQ)
Our algorithm is evaluated on several benchmark multi-agent environments and we show that MARQ consistently outperforms several baselines and state-of-the-art algorithms.
- Score: 8.883885464358737
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose using regularization for Multi-Agent Reinforcement Learning rather
than learning explicit cooperative structures called {\em Multi-Agent
Regularized Q-learning} (MARQ). Many MARL approaches leverage centralized
structures in order to exploit global state information or removing
communication constraints when the agents act in a decentralized manner.
Instead of learning redundant structures which is removed during agent
execution, we propose instead to leverage shared experiences of the agents to
regularize the individual policies in order to promote structured exploration.
We examine several different approaches to how MARQ can either explicitly or
implicitly regularize our policies in a multi-agent setting. MARQ aims to
address these limitations in the MARL context through applying regularization
constraints which can correct bias in off-policy out-of-distribution agent
experiences and promote diverse exploration. Our algorithm is evaluated on
several benchmark multi-agent environments and we show that MARQ consistently
outperforms several baselines and state-of-the-art algorithms; learning in
fewer steps and converging to higher returns.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - ComaDICE: Offline Cooperative Multi-Agent Reinforcement Learning with Stationary Distribution Shift Regularization [11.620274237352026]
offline reinforcement learning (RL) has garnered significant attention for its ability to learn effective policies from pre-collected datasets.
MARL presents additional challenges due to the large joint state-action space and the complexity of multi-agent behaviors.
We introduce a regularizer in the space of stationary distributions to better handle distributional shift.
arXiv Detail & Related papers (2024-10-02T18:56:10Z) - Deep Multi-Agent Reinforcement Learning for Decentralized Active
Hypothesis Testing [11.639503711252663]
We tackle the multi-agent active hypothesis testing (AHT) problem by introducing a novel algorithm rooted in the framework of deep multi-agent reinforcement learning.
We present a comprehensive set of experimental results that effectively showcase the agents' ability to learn collaborative strategies and enhance performance.
arXiv Detail & Related papers (2023-09-14T01:18:04Z) - SACHA: Soft Actor-Critic with Heuristic-Based Attention for Partially
Observable Multi-Agent Path Finding [3.4260993997836753]
We propose a novel multi-agent actor-critic method called Soft Actor-Critic with Heuristic-Based Attention (SACHA)
SACHA learns a neural network for each agent to selectively pay attention to the shortest path guidance from multiple agents within its field of view.
We demonstrate decent improvements over several state-of-the-art learning-based MAPF methods with respect to success rate and solution quality.
arXiv Detail & Related papers (2023-07-05T23:36:33Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - RPM: Generalizable Behaviors for Multi-Agent Reinforcement Learning [90.43925357575543]
We propose ranked policy memory ( RPM) to collect diverse multi-agent trajectories for training MARL policies with good generalizability.
RPM enables MARL agents to interact with unseen agents in multi-agent generalization evaluation scenarios and complete given tasks, and it significantly boosts the performance up to 402% on average.
arXiv Detail & Related papers (2022-10-18T07:32:43Z) - Centralized Training with Hybrid Execution in Multi-Agent Reinforcement
Learning [7.163485179361718]
We introduce hybrid execution in multi-agent reinforcement learning (MARL)
MARL is a new paradigm in which agents aim to successfully complete cooperative tasks with arbitrary communication levels at execution time.
We contribute MARO, an approach that makes use of an auto-regressive predictive model, trained in a centralized manner, to estimate missing agents' observations.
arXiv Detail & Related papers (2022-10-12T14:58:32Z) - RACA: Relation-Aware Credit Assignment for Ad-Hoc Cooperation in
Multi-Agent Deep Reinforcement Learning [55.55009081609396]
We propose a novel method, called Relation-Aware Credit Assignment (RACA), which achieves zero-shot generalization in ad-hoc cooperation scenarios.
RACA takes advantage of a graph-based encoder relation to encode the topological structure between agents.
Our method outperforms baseline methods on the StarCraftII micromanagement benchmark and ad-hoc cooperation scenarios.
arXiv Detail & Related papers (2022-06-02T03:39:27Z) - A Policy Gradient Algorithm for Learning to Learn in Multiagent
Reinforcement Learning [47.154539984501895]
We propose a novel meta-multiagent policy gradient theorem that accounts for the non-stationary policy dynamics inherent to multiagent learning settings.
This is achieved by modeling our gradient updates to consider both an agent's own non-stationary policy dynamics and the non-stationary policy dynamics of other agents in the environment.
arXiv Detail & Related papers (2020-10-31T22:50:21Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.