RACA: Relation-Aware Credit Assignment for Ad-Hoc Cooperation in
Multi-Agent Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2206.01207v1
- Date: Thu, 2 Jun 2022 03:39:27 GMT
- Title: RACA: Relation-Aware Credit Assignment for Ad-Hoc Cooperation in
Multi-Agent Deep Reinforcement Learning
- Authors: Hao Chen, Guangkai Yang, Junge Zhang, Qiyue Yin, Kaiqi Huang
- Abstract summary: We propose a novel method, called Relation-Aware Credit Assignment (RACA), which achieves zero-shot generalization in ad-hoc cooperation scenarios.
RACA takes advantage of a graph-based encoder relation to encode the topological structure between agents.
Our method outperforms baseline methods on the StarCraftII micromanagement benchmark and ad-hoc cooperation scenarios.
- Score: 55.55009081609396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, reinforcement learning has faced several challenges in the
multi-agent domain, such as the credit assignment issue. Value function
factorization emerges as a promising way to handle the credit assignment issue
under the centralized training with decentralized execution (CTDE) paradigm.
However, existing value function factorization methods cannot deal with ad-hoc
cooperation, that is, adapting to new configurations of teammates at test time.
Specifically, these methods do not explicitly utilize the relationship between
agents and cannot adapt to different sizes of inputs. To address these
limitations, we propose a novel method, called Relation-Aware Credit Assignment
(RACA), which achieves zero-shot generalization in ad-hoc cooperation
scenarios. RACA takes advantage of a graph-based relation encoder to encode the
topological structure between agents. Furthermore, RACA utilizes an
attention-based observation abstraction mechanism that can generalize to an
arbitrary number of teammates with a fixed number of parameters. Experiments
demonstrate that our method outperforms baseline methods on the StarCraftII
micromanagement benchmark and ad-hoc cooperation scenarios.
Related papers
- Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - Adaptive Value Decomposition with Greedy Marginal Contribution
Computation for Cooperative Multi-Agent Reinforcement Learning [48.41925886860991]
Real-world cooperation often requires intensive coordination among agents simultaneously.
Traditional methods that learn the value function as a monotonic mixing of per-agent utilities cannot solve the tasks with non-monotonic returns.
We propose a novel explicit credit assignment method to address the non-monotonic problem.
arXiv Detail & Related papers (2023-02-14T07:23:59Z) - Learning Cooperative Multi-Agent Policies with Partial Reward Decoupling [13.915157044948364]
One of the preeminent obstacles to scaling multi-agent reinforcement learning is assigning credit to individual agents' actions.
In this paper, we address this credit assignment problem with an approach that we call textitpartial reward decoupling (PRD)
PRD decomposes large cooperative multi-agent RL problems into decoupled subproblems involving subsets of agents, thereby simplifying credit assignment.
arXiv Detail & Related papers (2021-12-23T17:48:04Z) - Shapley Counterfactual Credits for Multi-Agent Reinforcement Learning [34.856522993714535]
We propose Shapley Counterfactual Credit Assignment, a novel method for explicit credit assignment which accounts for the coalition of agents.
Our method outperforms existing cooperative MARL algorithms significantly and achieves the state-of-the-art, with especially large margins on tasks with more severe difficulties.
arXiv Detail & Related papers (2021-06-01T07:38:34Z) - Modeling the Interaction between Agents in Cooperative Multi-Agent
Reinforcement Learning [2.9360071145551068]
We propose a novel cooperative MARL algorithm named as interactive actor-critic(IAC)
IAC models the interaction of agents from perspectives of policy and value function.
We extend the value decomposition methods to continuous control tasks and evaluate IAC on benchmark tasks including classic control and multi-agent particle environments.
arXiv Detail & Related papers (2021-02-10T01:58:28Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z) - Multi-Agent Determinantal Q-Learning [39.79718674655209]
We propose multi-agent determinantal Q-learning. Q-DPP promotes agents to acquire diverse behavioral models.
We demonstrate that Q-DPP generalizes major solutions including VDN, QMIX, and QTRAN on decentralizable cooperative tasks.
arXiv Detail & Related papers (2020-06-02T09:32:48Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC)
It is a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces.
We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2020-03-14T21:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.