論文の概要: Improving Fairness for Data Valuation in Federated Learning
- arxiv url: http://arxiv.org/abs/2109.09046v1
- Date: Sun, 19 Sep 2021 02:39:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-21 16:21:18.880703
- Title: Improving Fairness for Data Valuation in Federated Learning
- Title(参考訳): フェデレーション学習におけるデータ評価の公平性向上
- Authors: Zhenan Fan, Huang Fang, Zirui Zhou, Jian Pei, Michael P. Friedlander,
Changxin Liu, Yong Zhang
- Abstract要約: 本稿では,フェデレートされたシャプリー値の公平性を改善するために,フェデレーションされたシャプリー値と呼ばれる新しい尺度を提案する。
この行列は、最適化から概念やツールを活用することにより、ほぼ低ランクであることが穏やかな条件下で示される。
- 参考スコア(独自算出の注目度): 39.61504568047234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is an emerging decentralized machine learning scheme that
allows multiple data owners to work collaboratively while ensuring data
privacy. The success of federated learning depends largely on the participation
of data owners. To sustain and encourage data owners' participation, it is
crucial to fairly evaluate the quality of the data provided by the data owners
and reward them correspondingly. Federated Shapley value, recently proposed by
Wang et al. [Federated Learning, 2020], is a measure for data value under the
framework of federated learning that satisfies many desired properties for data
valuation. However, there are still factors of potential unfairness in the
design of federated Shapley value because two data owners with the same local
data may not receive the same evaluation. We propose a new measure called
completed federated Shapley value to improve the fairness of federated Shapley
value. The design depends on completing a matrix consisting of all the possible
contributions by different subsets of the data owners. It is shown under mild
conditions that this matrix is approximately low-rank by leveraging concepts
and tools from optimization. Both theoretical analysis and empirical evaluation
verify that the proposed measure does improve fairness in many circumstances.
- Abstract(参考訳): フェデレーション学習(federated learning)は、データのプライバシを確保しながら、複数のデータ所有者が協力して作業できる、新たな分散機械学習スキームである。
連合学習の成功は、データ所有者の参加に大きく依存する。
データ所有者の参加を維持、奨励するには、データ所有者が提供したデータの品質を公平に評価し、それに応じて報酬を与えることが不可欠である。
Federated Shapley Value – Wangらによって最近提案された。
[federated learning, 2020]は,データバリュエーションに多くの望ましい特性を満たす,フェデレーション学習の枠組みの下でのデータ価値を測る尺度です。
しかし、同じローカルデータを持つ2人のデータ所有者が同じ評価を受けられないため、フェデレーション・シャプレー値の設計に不公平な可能性がある。
フェデレーションシャプリー値の公平性を改善するために, フェデレーションシャプリー値と呼ばれる新しい尺度を提案する。
設計は、データ所有者の異なるサブセットによるすべての可能な貢献からなるマトリックスを完成させることに依存する。
軽度な条件下では、最適化から概念やツールを活用することで、この行列は概して低ランクであることが示される。
理論解析と経験的評価の両方が、提案手法が多くの状況において公平性を改善することを検証している。
関連論文リスト
- Data Valuation and Detections in Federated Learning [4.899818550820576]
フェデレートラーニング(FL)は、生データのプライバシーを維持しながら協調的なモデルトレーニングを可能にする。
このフレームワークの課題は、データの公平かつ効率的な評価であり、FLタスクで高品質なデータを提供するためにクライアントにインセンティブを与えるのに不可欠である。
本稿では,FLタスクにおける事前学習アルゴリズムを使わずに,クライアントのコントリビューションを評価し,関連するデータセットを選択するための新たなプライバシ保護手法を提案する。
論文 参考訳(メタデータ) (2023-11-09T12:01:32Z) - Shapley Value on Probabilistic Classifiers [6.163093930860032]
機械学習(ML)の文脈では、データ評価手法は、MLモデルの実用性に対する各データポイントの寄与を公平に測定することを目的としている。
従来のShapleyベースのデータ評価手法は、有益と有害なトレーニングデータポイントを効果的に区別するものではない。
確率的効用関数を構成することにより確率的シェープ(P-Shapley)値を提案する。
論文 参考訳(メタデータ) (2023-06-12T15:09:13Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - Fair and efficient contribution valuation for vertical federated
learning [49.50442779626123]
フェデレートラーニング(Federated Learning)は、データを共有することなく、分散データソース上で機械学習モデルをトレーニングするための一般的な技術である。
シェープリー値(Shapley value, SV)は、協調ゲーム理論から派生した、証明可能なフェアコントリビューション評価指標である。
本稿では,SVに基づく垂直結合シェープ値(VerFedSV)と呼ばれるコントリビューション評価指標を提案する。
論文 参考訳(メタデータ) (2022-01-07T19:57:15Z) - GTG-Shapley: Efficient and Accurate Participant Contribution Evaluation
in Federated Learning [25.44023017628766]
Federated Learning(FL)は、コラボレーティブ機械学習とデータのプライバシ保護のギャップを埋めるものだ。
個人データを公開せずに最終FLモデルの性能に対する参加者の貢献を適切に評価することが不可欠である。
本稿では,この課題に対処するためのガイドトラニケーションのグラディエント・シェープ手法を提案する。
論文 参考訳(メタデータ) (2021-09-05T12:17:00Z) - Representative & Fair Synthetic Data [68.8204255655161]
公平性制約を自己監督学習プロセスに組み込むためのフレームワークを提示する。
私たちはuci成人国勢調査データセットの代表者および公正版を作成します。
我々は、代表的かつ公正な合成データを将来有望なビルディングブロックとみなし、歴史的世界ではなく、私たちが生きようとしている世界についてアルゴリズムを教える。
論文 参考訳(メタデータ) (2021-04-07T09:19:46Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
フェデレートラーニング(FL)は、分散データソース上で機械学習(ML)モデルをトレーニングする一般的なテクニックである。
Shapley value (SV) はデータ値の概念として多くのデシラタを満たすユニークなペイオフスキームを定義する。
本稿では,FL に対応する SV の変種を提案する。
論文 参考訳(メタデータ) (2020-09-14T04:37:54Z) - Towards Efficient Data Valuation Based on the Shapley Value [65.4167993220998]
本稿では,Shapley値を用いたデータ評価の問題点について検討する。
Shapleyの値は、データ値の概念に対して多くのデシダータを満たすユニークなペイオフスキームを定義する。
本稿では,Shapley値を近似する効率的なアルゴリズムのレパートリーを提案する。
論文 参考訳(メタデータ) (2019-02-27T00:22:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。