Barely Biased Learning for Gaussian Process Regression
- URL: http://arxiv.org/abs/2109.09417v1
- Date: Mon, 20 Sep 2021 10:35:59 GMT
- Title: Barely Biased Learning for Gaussian Process Regression
- Authors: David R. Burt, Artem Artemev, Mark van der Wilk
- Abstract summary: We suggest a method that adaptively selects the amount of computation to use when estimating the log marginal likelihood.
While simple in principle, our current implementation of the method is not competitive with existing approximations.
- Score: 19.772149500352945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work in scalable approximate Gaussian process regression has discussed
a bias-variance-computation trade-off when estimating the log marginal
likelihood. We suggest a method that adaptively selects the amount of
computation to use when estimating the log marginal likelihood so that the bias
of the objective function is guaranteed to be small. While simple in principle,
our current implementation of the method is not competitive computationally
with existing approximations.
Related papers
- Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Introduction To Gaussian Process Regression In Bayesian Inverse
Problems, With New ResultsOn Experimental Design For Weighted Error Measures [0.0]
This work serves as an introduction to Gaussian process regression, in particular in the context of building surrogate models for inverse problems.
We show that the error between the true and approximate posterior distribution can be bounded by the error between the true and approximate likelihood, measured in the $L2$-norm weighted by the true posterior.
arXiv Detail & Related papers (2023-02-09T09:25:39Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - Scalable Gaussian-process regression and variable selection using
Vecchia approximations [3.4163060063961255]
Vecchia-based mini-batch subsampling provides unbiased gradient estimators.
We propose Vecchia-based mini-batch subsampling, which provides unbiased gradient estimators.
arXiv Detail & Related papers (2022-02-25T21:22:38Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
Regression Using Conjugate Gradients [19.772149500352945]
We show that approximate maximum likelihood learning of model parameters by maximising our lower bound retains many of the sparse variational approach benefits.
In experiments, we show improved predictive performance with our model for a comparable amount of training time compared to other conjugate gradient based approaches.
arXiv Detail & Related papers (2021-02-16T17:54:59Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.