Towards Energy-Efficient and Secure Edge AI: A Cross-Layer Framework
- URL: http://arxiv.org/abs/2109.09829v1
- Date: Mon, 20 Sep 2021 20:22:56 GMT
- Title: Towards Energy-Efficient and Secure Edge AI: A Cross-Layer Framework
- Authors: Muhammad Shafique, Alberto Marchisio, Rachmad Vidya Wicaksana Putra,
Muhammad Abdullah Hanif
- Abstract summary: Deep neural networks (DNNs) and spiking neural networks (SNNs) offer state-of-the-art results on resource-constrained edge devices.
These systems are required to maintain correct functionality under diverse security and reliability threats.
This paper first discusses existing approaches to address energy efficiency, reliability, and security issues at different system layers.
- Score: 13.573645522781712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The security and privacy concerns along with the amount of data that is
required to be processed on regular basis has pushed processing to the edge of
the computing systems. Deploying advanced Neural Networks (NN), such as deep
neural networks (DNNs) and spiking neural networks (SNNs), that offer
state-of-the-art results on resource-constrained edge devices is challenging
due to the stringent memory and power/energy constraints. Moreover, these
systems are required to maintain correct functionality under diverse security
and reliability threats. This paper first discusses existing approaches to
address energy efficiency, reliability, and security issues at different system
layers, i.e., hardware (HW) and software (SW). Afterward, we discuss how to
further improve the performance (latency) and the energy efficiency of Edge AI
systems through HW/SW-level optimizations, such as pruning, quantization, and
approximation. To address reliability threats (like permanent and transient
faults), we highlight cost-effective mitigation techniques, like fault-aware
training and mapping. Moreover, we briefly discuss effective detection and
protection techniques to address security threats (like model and data
corruption). Towards the end, we discuss how these techniques can be combined
in an integrated cross-layer framework for realizing robust and
energy-efficient Edge AI systems.
Related papers
- SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids [55.35059657148395]
We present SafePowerGraph, the first simulator-agnostic, safety-oriented framework and benchmark for Graph Neural Networks (GNNs) in power systems (PS) operations.
SafePowerGraph integrates multiple PF and OPF simulators and assesses GNN performance under diverse scenarios, including energy price variations and power line outages.
arXiv Detail & Related papers (2024-07-17T09:01:38Z) - Enhancing Critical Infrastructure Cybersecurity: Collaborative DNN Synthesis in the Cloud Continuum [0.0]
Researchers are exploring the integration of IoT and the cloud continuum, together with AI, to enhance the cost-effectiveness and efficiency of critical infrastructure (CI) systems.
This integration, however, increases susceptibility of CI systems to cyberattacks, potentially leading to disruptions like power outages, oil spills, or even a nuclear mishap.
We propose an innovative approach that utilizes trained edge cloud models to synthesize central cloud models.
arXiv Detail & Related papers (2024-05-23T00:36:45Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
The integration of Internet of Things (IoT) applications in our daily lives has led to a surge in data traffic, posing significant security challenges.
This paper focuses on improving the effectiveness of ML-based IDS at the edge level by introducing a novel method to find a balanced trade-off between cost and accuracy.
arXiv Detail & Related papers (2024-04-29T21:26:18Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Scalable and Efficient Methods for Uncertainty Estimation and Reduction
in Deep Learning [0.0]
This paper explores scalable and efficient methods for uncertainty estimation and reduction in deep learning.
We tackle the inherent uncertainties arising from out-of-distribution inputs and hardware non-idealities.
Our approach encompasses problem-aware training algorithms, novel NN topologies, and hardware co-design solutions.
arXiv Detail & Related papers (2024-01-13T19:30:34Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
Deep Neural Networks (DNNs) are powerful tools that have shown extraordinary results in many scenarios.
However, their intricate designs and lack of transparency raise safety concerns when applied in real-world applications.
Formal Verification (FV) of DNNs has emerged as a valuable solution to provide provable guarantees on the safety aspect.
arXiv Detail & Related papers (2023-12-10T13:51:25Z) - FedDiSC: A Computation-efficient Federated Learning Framework for Power
Systems Disturbance and Cyber Attack Discrimination [1.0621485365427565]
This paper proposes a novel Federated Learning-based privacy-preserving and communication-efficient attack detection framework, known as FedDiSC.
We put forward a representation learning-based Deep Auto-Encoder network to accurately detect power system and cybersecurity anomalies.
To adapt our proposed framework to the timeliness of real-world cyberattack detection in SGs, we leverage the use of a gradient privacy-preserving quantization scheme known as DP-SIGNSGD.
arXiv Detail & Related papers (2023-04-07T13:43:57Z) - Edge Security: Challenges and Issues [7.315147165274525]
Edge computing shifts data processing services to the network edge, where data are generated.
This paper discusses the security threats and vulnerabilities emerging from the edge network architecture spanning from the hardware layer to the system layer.
arXiv Detail & Related papers (2022-06-14T20:49:48Z) - Adversarially Robust Learning for Security-Constrained Optimal Power
Flow [55.816266355623085]
We tackle the problem of N-k security-constrained optimal power flow (SCOPF)
N-k SCOPF is a core problem for the operation of electrical grids.
Inspired by methods in adversarially robust training, we frame N-k SCOPF as a minimax optimization problem.
arXiv Detail & Related papers (2021-11-12T22:08:10Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.