Quantum-driven Zero Trust Framework with Dynamic Anomaly Detection in 7G Technology: A Neural Network Approach
- URL: http://arxiv.org/abs/2502.07779v1
- Date: Tue, 11 Feb 2025 18:59:32 GMT
- Title: Quantum-driven Zero Trust Framework with Dynamic Anomaly Detection in 7G Technology: A Neural Network Approach
- Authors: Shakil Ahmed, Ibne Farabi Shihab, Ashfaq Khokhar,
- Abstract summary: We propose the Quantum Neural Network-Enhanced Zero Trust Framework (QNN-ZTF) for enhanced security.
We integrate Zero Trust Architecture, Intrusion Detection Systems, and Quantum Neural Networks (QNNs) for enhanced security.
We show improved cyber threat mitigation, demonstrating the framework's effectiveness in reducing false positives and response times.
- Score: 0.0
- License:
- Abstract: As cyber threats become more complex, modern networks struggle to balance security, scalability, and computational efficiency. While quantum computing offers a promising solution, adoption is limited by scalability constraints, inefficiencies in data encoding, and high computational costs. To address these challenges, we propose the Quantum Neural Network-Enhanced Zero Trust Framework (QNN-ZTF), integrating Zero Trust Architecture, Intrusion Detection Systems, and Quantum Neural Networks (QNNs) for enhanced security. Leveraging superposition, entanglement, and variational optimization, QNN-ZTF enables real-time anomaly detection and adaptive policy enforcement. Key contributions include a hybrid quantum-classical architecture for scalability, dynamic anomaly scoring for improved detection accuracy, and quantum micro-segmentation to contain threats and restrict lateral movement. Evaluation results show improved cyber threat mitigation, demonstrating the framework's effectiveness in reducing false positives and response times. This research establishes a scalable, adaptive, and quantum-optimized cybersecurity model, advancing quantum-enhanced security for next-generation networks.
Related papers
- Layer-Wise Security Framework and Analysis for the Quantum Internet [4.010252214778243]
This study explores the vulnerabilities and the corresponding mitigation strategies across different layers of the quantum internet.
We assess the severity of potential attacks, evaluate the expected effectiveness of mitigation strategies, and identify vulnerabilities within diverse network configurations.
The findings underline the need for ongoing research into the security dimension of the quantum internet to ensure its robustness, encourage its adoption, and maximize its impact on society.
arXiv Detail & Related papers (2025-01-13T00:44:42Z) - FL-QDSNNs: Federated Learning with Quantum Dynamic Spiking Neural Networks [4.635820333232683]
This paper introduces the Federated Learning-Quantum Dynamic Spiking Neural Networks (FL-QDSNNs) framework.
Central to our framework is a novel dynamic threshold mechanism for activating quantum gates in Quantum Spiking Neural Networks (QSNNs)
Our FL-QDSNNs framework has demonstrated superior accuracies-up to 94% on the Iris dataset and markedly outperforms existing Quantum Federated Learning (QFL) approaches.
arXiv Detail & Related papers (2024-12-03T09:08:33Z) - Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
deepfake technologies pose challenges to privacy, security, and information integrity.
This paper introduces a Quantum-Trained Convolutional Neural Network framework designed to enhance the detection of deepfake audio.
arXiv Detail & Related papers (2024-10-11T20:52:10Z) - CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - RobQuNNs: A Methodology for Robust Quanvolutional Neural Networks against Adversarial Attacks [3.9554540293311864]
Quanvolutional Neural Networks (QuNNs) integrate quantum and classical layers.
This study introduces RobQuNN, a new methodology to enhance the robustness of QuNNs against adversarial attacks.
The findings reveal that QuNNs exhibit up to 60% higher robustness compared to classical networks for the MNIST dataset.
arXiv Detail & Related papers (2024-07-04T12:13:52Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Benchmarking Adversarially Robust Quantum Machine Learning at Scale [20.76790069530767]
We benchmark the robustness of quantum ML networks at scale by performing rigorous training for both simple and complex image datasets.
Our results show that QVCs offer a notably enhanced robustness against classical adversarial attacks.
By combining quantum and classical network outcomes, we propose a novel adversarial attack detection technology.
arXiv Detail & Related papers (2022-11-23T03:26:16Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.