論文の概要: Object Detection in Thermal Spectrum for Advanced Driver-Assistance
Systems (ADAS)
- arxiv url: http://arxiv.org/abs/2109.09854v1
- Date: Mon, 20 Sep 2021 21:38:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-22 14:21:32.497318
- Title: Object Detection in Thermal Spectrum for Advanced Driver-Assistance
Systems (ADAS)
- Title(参考訳): 高度運転支援システム(ADAS)のサーマルスペクトルにおける物体検出
- Authors: Muhammad Ali Farooq, Peter Corcoran, Cosmin Rotariu
- Abstract要約: 熱赤外スペクトルにおける物体検出は、低照度条件と異なる気象条件においてより信頼性の高いデータソースを提供する。
本稿では,高度運転支援システム(ADAS)の7つの異なるクラスを用いたサーマルビジョンにおける最先端のオブジェクト・ビジョン・フレームワークの探索と適用について述べる。
公開データセット上のトレーニング済みネットワーク変種は、3つの異なるテストアプローチでテストデータ上で検証される。
訓練されたネットワークの有効性は、未冷却のLWIRプロトタイプ熱カメラで捉えたローカル収集された新しいテストデータで検証される。
- 参考スコア(独自算出の注目度): 0.5156484100374058
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Object detection in thermal infrared spectrum provides more reliable data
source in low-lighting conditions and different weather conditions, as it is
useful both in-cabin and outside for pedestrian, animal, and vehicular
detection as well as for detecting street-signs & lighting poles. This paper is
about exploring and adapting state-of-the-art object detection and classifier
framework on thermal vision with seven distinct classes for advanced
driver-assistance systems (ADAS). The trained network variants on public
datasets are validated on test data with three different test approaches which
include test-time with no augmentation, test-time augmentation, and test-time
with model ensembling. Additionally, the efficacy of trained networks is tested
on locally gathered novel test-data captured with an uncooled LWIR prototype
thermal camera in challenging weather and environmental scenarios. The
performance analysis of trained models is investigated by computing precision,
recall, and mean average precision scores (mAP). Furthermore, the trained model
architecture is optimized using TensorRT inference accelerator and deployed on
resource-constrained edge hardware Nvidia Jetson Nano to explicitly reduce the
inference time on GPU as well as edge devices for further real-time onboard
installations.
- Abstract(参考訳): 熱赤外スペクトルにおける物体検出は、歩行者、動物、車両の検知だけでなく、道路標識や照明ポールの検出にも有用であるため、低照度条件と異なる気象条件においてより信頼性の高いデータソースを提供する。
本稿では,先進運転支援システム(ADAS)の7つの異なるクラスを用いて,サーマルビジョンにおける最先端物体検出および分類器フレームワークの探索と適用について述べる。
パブリックデータセット上でトレーニングされたネットワーク変種は、3つの異なるテストアプローチでテストデータ上で検証される。
さらに,未冷却のlwirプロトタイプサーマルカメラを用いてローカルに収集した新しいテストデータを用いて,気象・環境シナリオに挑戦する訓練ネットワークの有効性を検証した。
トレーニングモデルの性能解析は,計算精度,リコール,平均平均精度スコア(mAP)を用いて検討した。
さらに、トレーニングされたモデルアーキテクチャは、TensorRT推論アクセラレータを使用して最適化され、リソース制約のあるエッジハードウェアであるNvidia Jetson Nanoにデプロイされる。
関連論文リスト
- Rapid Wildfire Hotspot Detection Using Self-Supervised Learning on Temporal Remote Sensing Data [0.12289361708127873]
衛星ネットワークや高度なAIモデルからリモートセンシングされたデータを活用して、ホットスポットを自動的に検出することは、山火事モニタリングシステムを構築する効果的な方法である。
本稿では,欧州の火災イベントに関連するリモートセンシングデータの時系列を含む新しいデータセットと,多時期データを解析し,潜在的にほぼリアルタイムにホットスポットを識別できる自己監視学習(SSL)モデルを提案する。
我々は、我々のデータセットといくつかの火災イベントを含む熱異常のデータセットであるThrawsを用いて、モデルの性能を訓練し、評価し、F1スコア63.58を得る。
論文 参考訳(メタデータ) (2024-05-30T14:31:46Z) - Hardware Acceleration for Real-Time Wildfire Detection Onboard Drone
Networks [6.313148708539912]
遠隔地や森林地帯での山火事の検出は 破壊と生態系の保全を 最小化するのに不可欠です
ドローンは、高度な撮像技術を備えた、リモートで困難な地形へのアジャイルアクセスを提供する。
限られた計算とバッテリリソースは、画像分類モデルの実装と効率的な実装に困難をもたらす。
本稿では,リアルタイム画像分類と火災分断モデルの構築を目的とする。
論文 参考訳(メタデータ) (2024-01-16T04:16:46Z) - WEDGE: A multi-weather autonomous driving dataset built from generative
vision-language models [51.61662672912017]
本稿では,視覚言語生成モデルを用いて生成した合成データセットWEDGEを紹介する。
WEDGEは16の極度の気象条件で3360枚の画像で構成され、16513個の境界ボックスを手動で注釈付けしている。
53.87%の検定精度と45.41mAPで分類・検出のためのベースライン性能を確立した。
論文 参考訳(メタデータ) (2023-05-12T14:42:47Z) - Evaluation of Thermal Imaging on Embedded GPU Platforms for Application
in Vehicular Assistance Systems [0.5156484100374058]
本研究は、スマートで安全な車両用サーマルオブジェクト検出のリアルタイム性能を評価することに焦点を当てた。
35,000以上の異なるフレームからなる新しい大規模熱データセットを取得する。
トレーニングネットワークの有効性は、様々な定量的指標を用いて、広範なテストデータに基づいて検証される。
論文 参考訳(メタデータ) (2022-01-05T15:36:25Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
赤外線(IR)カメラは、照明条件や照明条件が悪ければ頑丈である。
既存のUDA手法を改善するためのアルゴリズムメタ学習フレームワークを提案する。
KAISTおよびDSIACデータセットのための最先端熱検出器を作成した。
論文 参考訳(メタデータ) (2021-10-07T02:28:18Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
アンダーエクスポージャー地域は、安全な自動運転のための周囲の完全な認識を構築するのに不可欠である。
サーマルカメラが利用可能になったことで、他の光学センサーが解釈可能な信号を捉えていない地域を探索するための重要な代替手段となった。
本研究は,可視光画像から熱画像へ学習を伝達するためのスタイル伝達手法を用いたドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-01T09:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。