Augmenting Depth Estimation with Geospatial Context
- URL: http://arxiv.org/abs/2109.09879v1
- Date: Mon, 20 Sep 2021 23:24:17 GMT
- Title: Augmenting Depth Estimation with Geospatial Context
- Authors: Scott Workman, Hunter Blanton
- Abstract summary: We propose an end-to-end architecture for depth estimation.
We infer a synthetic ground-level depth map from a co-located overhead image, then fuses it inside of an encoder/decoder style segmentation network.
Results demonstrate that integrating geospatial context significantly reduces error compared to baselines.
- Score: 20.79700110152325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern cameras are equipped with a wide array of sensors that enable
recording the geospatial context of an image. Taking advantage of this, we
explore depth estimation under the assumption that the camera is geocalibrated,
a problem we refer to as geo-enabled depth estimation. Our key insight is that
if capture location is known, the corresponding overhead viewpoint offers a
valuable resource for understanding the scale of the scene. We propose an
end-to-end architecture for depth estimation that uses geospatial context to
infer a synthetic ground-level depth map from a co-located overhead image, then
fuses it inside of an encoder/decoder style segmentation network. To support
evaluation of our methods, we extend a recently released dataset with overhead
imagery and corresponding height maps. Results demonstrate that integrating
geospatial context significantly reduces error compared to baselines, both at
close ranges and when evaluating at much larger distances than existing
benchmarks consider.
Related papers
- ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation [62.600382533322325]
We propose a novel monocular depth estimation method called ScaleDepth.
Our method decomposes metric depth into scene scale and relative depth, and predicts them through a semantic-aware scale prediction module.
Our method achieves metric depth estimation for both indoor and outdoor scenes in a unified framework.
arXiv Detail & Related papers (2024-07-11T05:11:56Z) - Temporal Lidar Depth Completion [0.08192907805418582]
We show how a state-of-the-art method PENet can be modified to benefit from recurrency.
Our algorithm achieves state-of-the-art results on the KITTI depth completion dataset.
arXiv Detail & Related papers (2024-06-17T08:25:31Z) - Depth-aware Volume Attention for Texture-less Stereo Matching [67.46404479356896]
We propose a lightweight volume refinement scheme to tackle the texture deterioration in practical outdoor scenarios.
We introduce a depth volume supervised by the ground-truth depth map, capturing the relative hierarchy of image texture.
Local fine structure and context are emphasized to mitigate ambiguity and redundancy during volume aggregation.
arXiv Detail & Related papers (2024-02-14T04:07:44Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth.
Existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task.
We propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations.
arXiv Detail & Related papers (2023-09-27T20:54:56Z) - Self-Supervised Learning based Depth Estimation from Monocular Images [0.0]
The goal of Monocular Depth Estimation is to predict the depth map, given a 2D monocular RGB image as input.
We plan to do intrinsic camera parameters during training and apply weather augmentations to further generalize our model.
arXiv Detail & Related papers (2023-04-14T07:14:08Z) - ${S}^{2}$Net: Accurate Panorama Depth Estimation on Spherical Surface [4.649656275858966]
We propose an end-to-end deep network for monocular panorama depth estimation on a unit spherical surface.
Specifically, we project the feature maps extracted from equirectangular images onto unit spherical surface sampled by uniformly distributed grids.
We propose a global cross-attention-based fusion module to fuse the feature maps from skip connection and enhance the ability to obtain global context.
arXiv Detail & Related papers (2023-01-14T07:39:15Z) - Multi-Camera Collaborative Depth Prediction via Consistent Structure
Estimation [75.99435808648784]
We propose a novel multi-camera collaborative depth prediction method.
It does not require large overlapping areas while maintaining structure consistency between cameras.
Experimental results on DDAD and NuScenes datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2022-10-05T03:44:34Z) - Revisiting Near/Remote Sensing with Geospatial Attention [24.565068569913382]
This work addresses the task of overhead image segmentation when auxiliary ground-level images are available.
Recent work has shown that performing joint inference over these two modalities, often called near/remote sensing, can yield significant accuracy improvements.
We introduce the concept of geospatial attention, a geometry-aware attention mechanism that explicitly considers the geospatial relationship between the pixels in a ground-level image and a geographic location.
arXiv Detail & Related papers (2022-04-04T19:19:50Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
We address the problem of ground-to-satellite image geo-localization by matching a query image captured at the ground level against a large-scale database with geotagged satellite images.
Our new method is able to achieve the fine-grained location of a query image, up to pixel size precision of the satellite image.
arXiv Detail & Related papers (2022-03-26T20:10:38Z) - Multi-Modal Depth Estimation Using Convolutional Neural Networks [0.8701566919381223]
This paper addresses the problem of dense depth predictions from sparse distance sensor data and a single camera image on challenging weather conditions.
It explores the significance of different sensor modalities such as camera, Radar, and Lidar for estimating depth by applying Deep Learning approaches.
arXiv Detail & Related papers (2020-12-17T15:31:49Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.