論文の概要: NADE: A Benchmark for Robust Adverse Drug Events Extraction in Face of
Negations
- arxiv url: http://arxiv.org/abs/2109.10080v1
- Date: Tue, 21 Sep 2021 10:33:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-22 14:36:18.050309
- Title: NADE: A Benchmark for Robust Adverse Drug Events Extraction in Face of
Negations
- Title(参考訳): NADE: 否定に直面したロバストな逆薬物イベント抽出のためのベンチマーク
- Authors: Simone Scaboro, Beatrice Portelli, Emmanuele Chersoni, Enrico Santus,
Giuseppe Serra
- Abstract要約: 逆薬物イベント (ADE) 抽出法は, いわゆるメディアテキストの大量収集を迅速に調査し, 薬物関連副作用の言及を検知し, 医学的調査を誘発する。
近年のNLPのアドバンスにもかかわらず、そのようなモデルが言語品種にまたがって普及する傾向にあるにもかかわらず、そのようなモデルが頑丈であるかどうかは現在不明である。
本稿では,3つの最先端システムの評価を行い,ネガイオンに対する脆弱性を示すとともに,これらのモジュールの堅牢性を高めるための2つのストラテジーを提案する。
- 参考スコア(独自算出の注目度): 8.380439657099906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adverse Drug Event (ADE) extraction mod-els can rapidly examine large
collections of so-cial media texts, detecting mentions of drug-related adverse
reactions and trigger medicalinvestigations. However, despite the recent
ad-vances in NLP, it is currently unknown if suchmodels are robust in face
ofnegation, which ispervasive across language varieties.In this paper we
evaluate three state-of-the-artsystems, showing their fragility against
nega-tion, and then we introduce two possible strate-gies to increase the
robustness of these mod-els: a pipeline approach, relying on a
specificcomponent for negation detection; an augmen-tation of an ADE extraction
dataset to artifi-cially create negated samples and further trainthe models.We
show that both strategies bring significantincreases in performance, lowering
the num-ber of spurious entities predicted by the mod-els. Our dataset and code
will be publicly re-leased to encourage research on the topic.
- Abstract(参考訳): 逆薬物イベント (ADE) 抽出法は, メディアテキストの大量収集, 薬物関連副作用の言及の検出, 医学的調査の引き金となる。
However, despite the recent ad-vances in NLP, it is currently unknown if suchmodels are robust in face ofnegation, which ispervasive across language varieties.In this paper we evaluate three state-of-the-artsystems, showing their fragility against nega-tion, and then we introduce two possible strate-gies to increase the robustness of these mod-els: a pipeline approach, relying on a specificcomponent for negation detection; an augmen-tation of an ADE extraction dataset to artifi-cially create negated samples and further trainthe models.We show that both strategies bring significantincreases in performance, lowering the num-ber of spurious entities predicted by the mod-els.
私たちのデータセットとコードは、このトピックの研究を奨励するために、パブリックに再リリースされます。
関連論文リスト
- The Surprising Harmfulness of Benign Overfitting for Adversarial
Robustness [13.120373493503772]
根拠的真理そのものが敵の例に対して堅牢であるとしても、標準のアウト・オブ・サンプルのリスク目標の観点から見れば、明らかに過適合なモデルは良性である、という驚くべき結果が証明されます。
我々の発見は、実際に観察されたパズリング現象に関する理論的洞察を与え、真の標的関数(例えば、人間)は副次的攻撃に対して堅牢であり、一方、当初過適合のニューラルネットワークは、堅牢でないモデルに導かれる。
論文 参考訳(メタデータ) (2024-01-19T15:40:46Z) - Increasing Adverse Drug Events extraction robustness on social media:
case study on negation and speculation [7.052238842788185]
過去10年間で、ソーシャルメディアプラットフォーム上でAdverse Drug Events(ADE)を報告するユーザーが増えている。
本稿では,ソーシャルメディア上でのADE検出のための4つの最先端システムについて考察する。
我々は,否定的および推測されたADEを含むサンプルに対して,それらの性能をテストするベンチマークであるSNAXを紹介する。
論文 参考訳(メタデータ) (2022-09-06T20:38:42Z) - Improving negation detection with negation-focused pre-training [58.32362243122714]
否定は共通の言語的特徴であり、多くの言語理解タスクにおいて不可欠である。
最近の研究で、最先端のNLPモデルは否定を含むサンプルで性能が低いことが示されている。
本稿では,データ拡張と否定マスキングを対象とする,否定に焦点をあてた新たな事前学習戦略を提案する。
論文 参考訳(メタデータ) (2022-05-09T02:41:11Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Artificial Text Detection via Examining the Topology of Attention Maps [58.46367297712477]
トポロジカルデータ分析(TDA)に基づく3種類の解釈可能なトポロジカル特徴を提案する。
BERTモデルから派生した特徴が3つの共通データセットにおいて、カウントベースとニューラルベースベースラインを最大10%上回っていることを実証的に示す。
特徴の探索解析は表面に対する感度と構文的性質を明らかにしている。
論文 参考訳(メタデータ) (2021-09-10T12:13:45Z) - Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning [57.4036085386653]
文ペア分類タスクのプロンプトベースモデルでは,語彙重なりに基づく推論の一般的な落とし穴が依然として残っていることを示す。
そこで,プレトレーニングウェイトを保存する正規化を加えることは,この破壊的な微調整の傾向を緩和するのに有効であることを示す。
論文 参考訳(メタデータ) (2021-09-09T10:10:29Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Closeness and Uncertainty Aware Adversarial Examples Detection in
Adversarial Machine Learning [0.7734726150561088]
敵のサンプルを検出するための2つの異なるメトリクス群の使用法を探索し、評価します。
敵検出のための新機能を導入し、これらの指標のパフォーマンスが使用される攻撃の強さに大きく依存していることを示します。
論文 参考訳(メタデータ) (2020-12-11T14:44:59Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - Retrofitting Vector Representations of Adverse Event Reporting Data to
Structured Knowledge to Improve Pharmacovigilance Signal Detection [6.644784804652259]
副作用の薬物イベント(ADE)は一般的で費用がかかる。臨床試験は潜在的なADEを識別する能力に制約がある。
統計学的手法は、これらの報告から信号を検出するのに便利な方法であるが、薬物とADEの関係を利用するには限界がある。
Aer2vecは、類似性のパターンをキャプチャするADEレポートエンティティの分散ベクトル表現を生成するが、語彙知識は利用できない。
本稿では,Aer2vec 薬物の組み込みを RxNorm の知識に適合させ,ベクトル再スケーリングを応用した新たな再適合変種を開発することにより,その限界に対処する。
論文 参考訳(メタデータ) (2020-08-07T19:11:51Z) - Drug-Drug Interaction Prediction with Wasserstein Adversarial
Autoencoder-based Knowledge Graph Embeddings [22.562175708415392]
薬物・薬物相互作用のための知識グラフ埋め込みフレームワークを提案する。
本フレームワークでは, 高品質な負のサンプルを生成するために, オートエンコーダを用いる。
判別器は、正三重項と負三重項の両方に基づいて薬物と相互作用の埋め込みを学習する。
論文 参考訳(メタデータ) (2020-04-15T21:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。