PDFNet: Pointwise Dense Flow Network for Urban-Scene Segmentation
- URL: http://arxiv.org/abs/2109.10083v1
- Date: Tue, 21 Sep 2021 10:39:46 GMT
- Title: PDFNet: Pointwise Dense Flow Network for Urban-Scene Segmentation
- Authors: Venkata Satya Sai Ajay Daliparthi
- Abstract summary: We propose a novel lightweight architecture named point-wise dense flow network (PDFNet)
In PDFNet, we employ dense, residual, and multiple shortcut connections to allow a smooth gradient flow to all parts of the network.
Our method significantly outperforms baselines in capturing small classes and in few-data regimes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, using a deep convolutional neural network (CNN) as a feature
encoder (or backbone) is the most commonly observed architectural pattern in
several computer vision methods, and semantic segmentation is no exception. The
two major drawbacks of this architectural pattern are: (i) the networks often
fail to capture small classes such as wall, fence, pole, traffic light, traffic
sign, and bicycle, which are crucial for autonomous vehicles to make accurate
decisions. (ii) due to the arbitrarily increasing depth, the networks require
massive labeled data and additional regularization techniques to converge and
to prevent the risk of over-fitting, respectively. While regularization
techniques come at minimal cost, the collection of labeled data is an expensive
and laborious process. In this work, we address these two drawbacks by
proposing a novel lightweight architecture named point-wise dense flow network
(PDFNet). In PDFNet, we employ dense, residual, and multiple shortcut
connections to allow a smooth gradient flow to all parts of the network. The
extensive experiments on Cityscapes and CamVid benchmarks demonstrate that our
method significantly outperforms baselines in capturing small classes and in
few-data regimes. Moreover, our method achieves considerable performance in
classifying out-of-the training distribution samples, evaluated on Cityscapes
to KITTI dataset.
Related papers
- Efficient and Accurate Hyperspectral Image Demosaicing with Neural Network Architectures [3.386560551295746]
This study investigates the effectiveness of neural network architectures in hyperspectral image demosaicing.
We introduce a range of network models and modifications, and compare them with classical methods and existing reference network approaches.
Results indicate that our networks outperform or match reference models in both datasets demonstrating exceptional performance.
arXiv Detail & Related papers (2023-12-21T08:02:49Z) - Non-Separable Multi-Dimensional Network Flows for Visual Computing [62.50191141358778]
We propose a novel formalism for non-separable multi-dimensional network flows.
Since the flow is defined on a per-dimension basis, the maximizing flow automatically chooses the best matching feature dimensions.
As a proof of concept, we apply our formalism to the multi-object tracking problem and demonstrate that our approach outperforms scalar formulations on the MOT16 benchmark in terms of robustness to noise.
arXiv Detail & Related papers (2023-05-15T13:21:44Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - RC-Net: A Convolutional Neural Network for Retinal Vessel Segmentation [3.0846824529023387]
We present RC-Net, a fully convolutional network, where the number of filters per layer is optimized to reduce feature overlapping and complexity.
In our experiments, RC-Net is quite competitive, outperforming alternatives vessels segmentation methods with two or even three orders of magnitude less trainable parameters.
arXiv Detail & Related papers (2021-12-21T10:24:01Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
In this paper, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.
The presented methodology directly improves a convolutional neural network (CNN) by enforcing the input image structure preservation through auto-encoders.
To validate the presented methodology, a simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on the CIFAR100 dataset.
arXiv Detail & Related papers (2021-10-06T13:54:49Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
We develop d-SNEQ, a differentiable quantisation method for network embedding.
d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information.
It is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed.
arXiv Detail & Related papers (2021-08-20T11:53:05Z) - Exploiting latent representation of sparse semantic layers for improved
short-term motion prediction with Capsule Networks [0.12183405753834559]
This paper explores use of Capsule Networks (CapsNets) in the context of learning a hierarchical representation of sparse semantic layers corresponding to small regions of the High-Definition (HD) map.
By using an architecture based on CapsNets the model is able to retain hierarchical relationships between detected features within images whilst also preventing loss of spatial data often caused by the pooling operation.
We show that our model achieves significant improvement over recently published works on prediction, whilst drastically reducing the overall size of the network.
arXiv Detail & Related papers (2021-03-02T11:13:43Z) - Mixed-Privacy Forgetting in Deep Networks [114.3840147070712]
We show that the influence of a subset of the training samples can be removed from the weights of a network trained on large-scale image classification tasks.
Inspired by real-world applications of forgetting techniques, we introduce a novel notion of forgetting in mixed-privacy setting.
We show that our method allows forgetting without having to trade off the model accuracy.
arXiv Detail & Related papers (2020-12-24T19:34:56Z) - Fully Dynamic Inference with Deep Neural Networks [19.833242253397206]
Two compact networks, called Layer-Net (L-Net) and Channel-Net (C-Net), predict on a per-instance basis which layers or filters/channels are redundant and therefore should be skipped.
On the CIFAR-10 dataset, LC-Net results in up to 11.9$times$ fewer floating-point operations (FLOPs) and up to 3.3% higher accuracy compared to other dynamic inference methods.
On the ImageNet dataset, LC-Net achieves up to 1.4$times$ fewer FLOPs and up to 4.6% higher Top-1 accuracy than the other methods.
arXiv Detail & Related papers (2020-07-29T23:17:48Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
We propose Micro-Dense Nets, a novel architecture with global residual learning and local micro-dense aggregations.
Our micro-dense block can be integrated with neural architecture search based models to boost their performance.
arXiv Detail & Related papers (2020-04-19T08:34:52Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.