Non-Separable Multi-Dimensional Network Flows for Visual Computing
- URL: http://arxiv.org/abs/2305.08628v1
- Date: Mon, 15 May 2023 13:21:44 GMT
- Title: Non-Separable Multi-Dimensional Network Flows for Visual Computing
- Authors: Viktoria Ehm, Daniel Cremers, Florian Bernard
- Abstract summary: We propose a novel formalism for non-separable multi-dimensional network flows.
Since the flow is defined on a per-dimension basis, the maximizing flow automatically chooses the best matching feature dimensions.
As a proof of concept, we apply our formalism to the multi-object tracking problem and demonstrate that our approach outperforms scalar formulations on the MOT16 benchmark in terms of robustness to noise.
- Score: 62.50191141358778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flows in networks (or graphs) play a significant role in numerous computer
vision tasks. The scalar-valued edges in these graphs often lead to a loss of
information and thereby to limitations in terms of expressiveness. For example,
oftentimes high-dimensional data (e.g. feature descriptors) are mapped to a
single scalar value (e.g. the similarity between two feature descriptors). To
overcome this limitation, we propose a novel formalism for non-separable
multi-dimensional network flows. By doing so, we enable an automatic and
adaptive feature selection strategy - since the flow is defined on a
per-dimension basis, the maximizing flow automatically chooses the best
matching feature dimensions. As a proof of concept, we apply our formalism to
the multi-object tracking problem and demonstrate that our approach outperforms
scalar formulations on the MOT16 benchmark in terms of robustness to noise.
Related papers
- Sequence Modeling with Multiresolution Convolutional Memory [27.218134279968062]
We build a new building block for sequence modeling called a MultiresLayer.
The key component of our model is the multiresolution convolution, capturing multiscale trends in the input sequence.
Our model yields state-of-the-art performance on a number of sequence classification and autoregressive density estimation tasks.
arXiv Detail & Related papers (2023-05-02T17:50:54Z) - MultiScale MeshGraphNets [65.26373813797409]
We propose two complementary approaches to improve the framework from MeshGraphNets.
First, we demonstrate that it is possible to learn accurate surrogate dynamics of a high-resolution system on a much coarser mesh.
Second, we introduce a hierarchical approach (MultiScale MeshGraphNets) which passes messages on two different resolutions.
arXiv Detail & Related papers (2022-10-02T20:16:20Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
Network for Internet Traffic Classification [9.365794791156972]
This paper introduces a new Lightweight, Efficient and eXplainable-by-design convolutional neural network (LEXNet) for Internet traffic classification.
LEXNet relies on a new residual block (for lightweight and efficiency purposes) and prototype layer (for explainability)
Based on a commercial-grade dataset, our evaluation shows that LEXNet succeeds to maintain the same accuracy as the best performing state-of-the-art neural network.
arXiv Detail & Related papers (2022-02-11T10:21:34Z) - PDFNet: Pointwise Dense Flow Network for Urban-Scene Segmentation [0.0]
We propose a novel lightweight architecture named point-wise dense flow network (PDFNet)
In PDFNet, we employ dense, residual, and multiple shortcut connections to allow a smooth gradient flow to all parts of the network.
Our method significantly outperforms baselines in capturing small classes and in few-data regimes.
arXiv Detail & Related papers (2021-09-21T10:39:46Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z) - Multiscale Deep Equilibrium Models [162.15362280927476]
We propose a new class of implicit networks, the multiscale deep equilibrium model (MDEQ)
An MDEQ directly solves for and backpropagates through the equilibrium points of multiple feature resolutions simultaneously.
We illustrate the effectiveness of this approach on two large-scale vision tasks: ImageNet classification and semantic segmentation on high-resolution images from the Cityscapes dataset.
arXiv Detail & Related papers (2020-06-15T18:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.